## UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA MESTRADO PROFISSIONAL EM MONTAGEM INDUSTRIAL

LEONARDO MACHADO MATOS

# PROJETO À FADIGA DE TUBULAÇÕES RÍGIDAS DO *HULL* E *TOPSIDE* DE UM FPSO

Niterói, RJ 2020

### LEONARDO MACHADO MATOS

## PROJETO À FADIGA DE TUBULAÇÕES RÍGIDAS DO *HULL* E *TOPSIDE* DE UM FPSO

Dissertação apresentada ao Mestrado Profissional em Montagem Industrial da Universidade Federal Fluminense, como requisito parcial para obtenção do título de Mestre em Montagem Industrial. Área de Concentração: Montagem Industrial.

Orientador: Prof. Dr. Antonio Lopes Gama

> Niterói, RJ 2020

#### Ficha catalográfica automática - SDC/BEE Gerada com informações fornecidas pelo autor

M425p Matos, Leonardo Machado Projeto à Fadiga de Tubulações Rígidas do Hull e Topside de um FPSO. / Leonardo Machado Matos ; Antônio Lopes Gama, orientador ; Roger Matsumoto Moreira, coorientador. Niterói, 2020. 215 f. : il. Dissertação (mestrado profissional)-Universidade Federal Fluminense, Niterói, 2020. DOI: http://dx.doi.org/10.22409/PMI.2020.mp.10030657750 1. Análise de Fadiga. 2. Tubulações Offshore. 3. Análise de Flexibilidade. 4. Plataforma FPSO. 5. Produção intelectual. I. Gama, Antônio Lopes, orientador. II. Moreira, Roger Matsumoto, coorientador. III. Universidade Federal Fluminense. Escola de Engenharia. IV. Título. CDD -

Bibliotecário responsável: Debora do Nascimento - CRB7/6368

### LEONARDO MACHADO MATOS

## PROJETO À FADIGA DE TUBULAÇÕES RÍGIDAS DO *HULL* E *TOPSIDE* DE UM FPSO

Dissertação apresentada ao Mestrado Profissional em Montagem Industrial da Universidade Federal Fluminense, como requisito parcial para obtenção do título de Mestre em Montagem Industrial. Área de Concentração: Montagem Industrial.

Aprovada em 09 de dezembro de 2020

BANCA EXAMINADORA

Prof. Dr. Antonio Lopes Gama - Orientador Universidade Federal Fluminense (UFF)

Prof. Ph.D. Roger Matsumoto Moreira Universidade Federal Fluminense (UFF)

Prof. Dr. Juan Manuel Pardal Universidade Federal Fluminense (UFF)

- N L L L colo -

Prof. Dr. Pedro Manuel Calas Lopes Pacheco Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET-RJ)

> Niterói, RJ 2020

### AGRADECIMENTOS

Agradeço, primeiramente, à Deus pela oportunidade da vida e por ter me concedido a possibilidade de todos os aprendizados que tive até aqui.

Agradeço à minha amada esposa Rayanne que sempre me apoiou, apesar de todas as dificuldades que temos pelo caminho. Com ela, aprendi, e continuo aprendendo a cada dia, a ter uma visão de mundo mais humana, na qual a real importância dessa vida é o amor entre os seres.

Agradeço à minha mãe Enildes por todos os ensinamentos, incentivos e suporte oferecido desde sempre.

Agradeço ao meu pai Afonso pela inspiração de perseverança, força e dedicação.

Agradeço ao meu irmão Raphael pelo exemplo de garra, determinação e superação que sempre me deu e me dá até os dias de hoje.

Agradeço ao meu sobrinho Dereck e ao Pingo pela alegria que trazem à nossa família.

Agradeço aos meus amigos Diego e Thaís pelo exemplo de amizade verdadeira, para todas as horas.

Amo todos vocês.

Muito agradecido por todo o conhecimento oferecido pelo Professor Antônio Gama. Pela paciência e dedicação nas inúmeras horas de conversas ao telefone e reuniões ao longo de toda a orientação do trabalho.

Agradeço ao Professor Roger Matsumoto Moreira pelo suporte dado ao longo da dissertação e desenvolvimento do projeto.

Agradeço aos funcionários da Petrobras Walber, Breno, Jordana, Medeiros e Alvim pela oportunidade de aprofundamento neste assunto tão relevante em sistemas de tubulações de unidades *offshore*.

Agradeço também à todos os amigos que fiz em minha jornada e que colaboraram para o meu desenvolvimento profissional e pessoal.

#### RESUMO

Este trabalho trata da análise de fadiga em tubulações rígidas presentes no *hull* e *topside* de um navio FPSO. Para tanto, buscou-se analisar os procedimentos de análise de fadiga, identificar suas diferenças, e principalmente, propor uma nova padronização, a fim de reduzir o tempo de execução de projetos, otimizando arranjos de tubulação e *suportação*, bem como obter resultados mais assertivos, com uma maior precisão da vida útil das tubulações *offshore*. Neste sentido, o trabalho foi realizado a partir de um embasamento teórico pautado em pesquisa bibliográfica e estudo de caso de variados sistemas de tubulações presentes em plataformas do tipo FPSO (*Floating Production Storage and Offloading*). Descobriu-se que uma nova metodologia de avaliação de fadiga baseada no critério da tensão admissível permite ao engenheiro a possibilidade de uma análise mais rápida, com uma significativa diminuição da quantidade de casos de carregamentos, alcançando também, uma maior precisão do resultado.

**Palavras-chave:** Análise de fadiga; Tubulações *offshore*; Padronização de procedimentos; navio FPSO.

### ABSTRACT

This work deals with the fatigue analysis of rigid pipes in the hull and topside of a FPSO ship. To this end, we sought to analyse fatigue procedures, identifying the differences between them, and mainly to propose a new standardization, in order to reduce the time of project execution, to optimize piping and support arrangements, as well as obtaining more assertive results, with a greater accuracy of the useful life of offshore pipelines. In this sense, the work was carried out based on a theoretical basis, bibliographic research and case studies of various piping systems present in FPSO (Floating Production Storage and Offloading) platforms. It was found that a new fatigue assessment methodology based on the allowable stress criterion allows the engineer the possibility of a faster analysis, with a significant decrease in the number of load cases, also achieving greater accuracy of results.

Keywords: Fatigue analysis; Offshore pipelines; Standardization of procedures; FPSO ship.

| CAPÍTULO I                                                                                                                   |                          |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 1.1 INTRODUÇÃO                                                                                                               | 13                       |
| CAPÍTULO II                                                                                                                  |                          |
| 2.1 DNV RP D101 STRUCTURAL ANALYSIS OF PIPING SYSTEMS (2017)                                                                 | 19                       |
| 2.2 ASME B31.3 PIPING PROCESS (2018)                                                                                         |                          |
| 2.2.1 Consideração da Fadiga Devido aos Ciclos de Temperatura – ASME B31.3                                                   | Conforme                 |
| 2.2.2 Análise de Fadiga                                                                                                      |                          |
| 2.2.2.1 Dano à fadiga devido à faixa de tensões cíclicas de outras fontes de não ondas                                       | fadiga que<br>24         |
| 2.2.2.2 Dano à fadiga devido à faixa de tensões cíclicas devido às ondas                                                     |                          |
| 2.2.2.3 Método de análise de fadiga alternativo                                                                              |                          |
| 2.3 DNV RP C203 FATIGUE DESIGN OF OFFSHORE STEEL STRUCTUR                                                                    | RES (2010)               |
| 2.3.1 Curvas S-N                                                                                                             |                          |
| 2.3.2 Métodos de Análise de Fadiga                                                                                           |                          |
| 2.3.3 Cálculo do Dano Acumulado                                                                                              |                          |
| 2.3.4 Tubulações e <i>Risers</i>                                                                                             |                          |
| 2.3.5 Casos em que uma Análise de Fadiga Detalhada Pode Ser Omitida                                                          |                          |
| 2.3.6 Fadiga de Alto e Baixo Ciclo                                                                                           |                          |
| 2.4 BS PD 5500 UNFIRED FUSION WELDED PRESSURE VESSELS (1997).                                                                |                          |
| 2.4.1 Método Simplificado de Análise Utilizando Curvas de Fadiga                                                             |                          |
| 2.4.2 Método Detalhado de Avaliação de Fadiga                                                                                |                          |
| 2.4.2.1 Curvas S-N para avaliação dos detalhes de solda                                                                      |                          |
| 2.4.2.2 Curvas S-N                                                                                                           |                          |
| 2.4.2.3 Consideração do efeito do material                                                                                   |                          |
| 2.4.2.4. Consideração do efeito da espessura de chapa                                                                        |                          |
| 2.5. ASME B31J Stress Intensification Factors, Flexibility Factors (2017)                                                    |                          |
| 2.6. DNV OS C101 Design of Offshore Steel Structures, General – LRDF Met                                                     | hod (2016)               |
| 2.6.1 Design Fatigue Factors (DFF)                                                                                           |                          |
| 2.7 IGE / TD / 12 Pipework Stress Analysis for Gas Industry Plant. Recommer<br>Transmission and Distribution Practice (2013) | <i>ıdations on</i><br>40 |
| 2.7.1 Classes de fadiga                                                                                                      |                          |
| 2.8 UKOOA FPSO Design Guidance Notes for UKCS Service (2002)                                                                 |                          |
| 2.9 ABS Spectral-Based Fatigue Analysis for FPSO Installations (2018)                                                        |                          |

# SUMÁRIO

| 2.10 IIW Recommendations for Fatigue Design of Welded Joints and Components (2008)<br>47    |
|---------------------------------------------------------------------------------------------|
| 2.11 Considerações sobre as Normas Europeias e Americanas                                   |
| 2.12 Estudo Comparativo entre Procedimentos de Projeto à Fadiga de Tubulações em FPSO<br>51 |
| CAPÍTULO III                                                                                |
| 3.1 FONTES DE DANOS POR FADIGA EM TUBULAÇÕES OFFSHORE                                       |
| 3.1.1 Tensões térmicas devido aos ciclos operacionais55                                     |
| 3.1.2 Tensões devido às acelerações57                                                       |
| 3.1.2.1 Aplicação de dados de acelerações no software de análise de tensões61               |
| 3.1.2.2 Tensão Média61                                                                      |
| 3.1.2.3 Aceleração Resultante (SRSS)62                                                      |
| 3.1.2.4 Efeito da não linearidade62                                                         |
| 3.1.2.5 Cálculo de fadiga pelo software CAESAR II                                           |
| 3.1.2.6 <i>Range</i> de tensão devido à aceleração64                                        |
| 3.1.2.7 Casos de Carregamento                                                               |
| 3.1.3 Tensões devido aos deslocamentos estruturais66                                        |
| 3.1.3.1 Consideração de Fatores de Altura de Onda67                                         |
| 3.1.3.1.1 Determinação dos Fatores de Altura de Onda                                        |
| 3.1.3.2 Distribuição do Dano por Fadiga em função da Altura de Onda71                       |
| 3.1.4 Tensões devido ao armazenamento e descarregamento da plataforma                       |
| CAPÍTULO IV                                                                                 |
| 4.1 NOVOS FATORES DE FLEXIBILIDADE E INTENSIFICAÇÃO DE TENSÃO DA<br>ASME B31.J              |
| CAPÍTULO V                                                                                  |
| 5.1. ESTUDOS DE CASOS DE PROJETOS À FADIGA DE TUBULAÇÕES <i>OFFSHORE</i><br>                |
| 5.1.1 Estudo de Caso 1                                                                      |
| 5.1.1.1 Linha do <i>Flare</i> (30") ao longo do <i>pipe rack</i> 86                         |
| 5.1.1.2 Linha de 4" ao longo do <i>pipe rack</i> 93                                         |
| 5.1.2 Estudo de Caso 2 – Linha de 12" (Gás)101                                              |
| 5.1.3 Estudo de Caso 3 – Fadiga Térmica x Fadiga devido às acelerações e                    |
| deslocamentos111                                                                            |
| 5.1.3.1 Arranjo 1 com Ø8":                                                                  |
| 5.1.3.2 Arranjo 2 com Ø8":                                                                  |
| 5.1.3.3 Arranjo 3 com Ø8" e Ø20":115                                                        |
| 5.1.4 Avaliação de Dano por Faixa de Altura de Ondas117                                     |
| 5.1.5 Aceleração Crítica119                                                                 |

| 5.1.6 Arranjo com curva 1,5D X curva 5D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 123                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.1.6.1 Determinação dos fatores SIF e K das curvas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 125                                                                                                                                               |
| 5.1.6.2 Resultados                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 126                                                                                                                                               |
| 5.1.7 Comparativo entre configurações de suportação de sistemas de tubulaç                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ões .127                                                                                                                                          |
| 5.1.8 Sistema com peso da válvula triplicado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 133                                                                                                                                               |
| 5.1.8.1 - Comparativos de Resultados                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 136                                                                                                                                               |
| 5.1.9 Sistema conforme norma B31.3 e norma B31.J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 136                                                                                                                                               |
| 5.1.9.1 - Determinação dos fatores conforme ASME B31.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 138                                                                                                                                               |
| 5.1.9.2 - Determinação dos SIF's conforme ASME B31.J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 139                                                                                                                                               |
| 5.1.9.3 - Aplicação dos fatores determinados de acordo com a ASME B31.J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 139                                                                                                                                               |
| 5.1.9.4 - Comparativos entre danos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 140                                                                                                                                               |
| 5.1.10 Combinações de Casos de Carregamento – Acelerações (efeito                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | da não                                                                                                                                            |
| linearidade)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 141                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 148<br>~                                                                                                                                          |
| 6.1 PROPOSTAS DE PROCEDIMENTOS DE PROJETO A FADIGA DE TUBUL<br>148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AÇOES                                                                                                                                             |
| 6.1.1 Procedimento de Análise de Fadiga baseado no Critério de Acúmulo o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | le Dano<br>150                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                   |
| 6.1.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | missível<br>165                                                                                                                                   |
| 6.1.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Ad<br>CAPÍTULO VII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | missível<br>165<br>177                                                                                                                            |
| 6.1.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Ad<br>CAPÍTULO VII<br>7.1 APLICAÇÃO DOS PROCEDIMENTOS DE FADIGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | missível<br>165<br>177<br>177                                                                                                                     |
| 6.1.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Ad<br>CAPÍTULO VII<br>7.1 APLICAÇÃO DOS PROCEDIMENTOS DE FADIGA<br>7.1.1 Procedimento de Análise de Fadiga baseado no Critério do Acúmulo o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | missível<br>165<br>177<br>177<br>le Dano<br>177                                                                                                   |
| 6.1.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Ad<br>CAPÍTULO VII<br>7.1 APLICAÇÃO DOS PROCEDIMENTOS DE FADIGA<br>7.1.1 Procedimento de Análise de Fadiga baseado no Critério do Acúmulo o<br>7.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Admissível .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | missível<br>165<br>177<br>177<br>de Dano<br>177<br>179                                                                                            |
| 6.1.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Ad<br>CAPÍTULO VII<br>7.1 APLICAÇÃO DOS PROCEDIMENTOS DE FADIGA<br>7.1.1 Procedimento de Análise de Fadiga baseado no Critério do Acúmulo o<br>7.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Admissível .<br>CAPÍTULO VIII.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | missível<br>165<br>177<br>177<br>de Dano<br>177<br>179<br>184                                                                                     |
| 6.1.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Ad<br>CAPÍTULO VII<br>7.1 APLICAÇÃO DOS PROCEDIMENTOS DE FADIGA<br>7.1.1 Procedimento de Análise de Fadiga baseado no Critério do Acúmulo o<br>7.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Admissível .<br>CAPÍTULO VIII.<br>8.1 PROPOSTAS DE NOVOS ESTUDOS E CONCLUSÃO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | missível<br>165<br>177<br>177<br>de Dano<br>177<br>179<br>184                                                                                     |
| 6.1.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Ad<br>CAPÍTULO VII<br>7.1 APLICAÇÃO DOS PROCEDIMENTOS DE FADIGA<br>7.1.1 Procedimento de Análise de Fadiga baseado no Critério do Acúmulo o<br>7.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Admissível .<br>CAPÍTULO VIII<br>8.1 PROPOSTAS DE NOVOS ESTUDOS E CONCLUSÃO<br>CAPÍTULO IX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | missível<br>165<br>177<br>177<br>de Dano<br>177<br>179<br>184<br>184                                                                              |
| <ul> <li>6.1.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Ad</li> <li>CAPÍTULO VII</li> <li>7.1 APLICAÇÃO DOS PROCEDIMENTOS DE FADIGA</li> <li>7.1.1 Procedimento de Análise de Fadiga baseado no Critério do Acúmulo o</li> <li>7.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Admissível .</li> <li>CAPÍTULO VIII.</li> <li>8.1 PROPOSTAS DE NOVOS ESTUDOS E CONCLUSÃO.</li> <li>CAPÍTULO IX.</li> <li>9.1 REFERÊNCIAS BIBLIOGRÁFICAS</li> </ul>                                                                                                                                                                                                                                                                                                                                                                             | missível<br>165<br>177<br>177<br>de Dano<br>177<br>179<br>184<br>184<br>185                                                                       |
| 6.1.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Ad<br>CAPÍTULO VII<br>7.1 APLICAÇÃO DOS PROCEDIMENTOS DE FADIGA<br>7.1.1 Procedimento de Análise de Fadiga baseado no Critério do Acúmulo o<br>7.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Admissível .<br>CAPÍTULO VIII.<br>8.1 PROPOSTAS DE NOVOS ESTUDOS E CONCLUSÃO.<br>CAPÍTULO IX.<br>9.1 REFERÊNCIAS BIBLIOGRÁFICAS                                                                                                                                                                                                                                                                                                                                                                                                                                                 | missível<br>165<br>177<br>177<br>de Dano<br>177<br>179<br>184<br>184<br>185<br>185                                                                |
| <ul> <li>6.1.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Ad</li> <li>CAPÍTULO VII</li> <li>7.1 APLICAÇÃO DOS PROCEDIMENTOS DE FADIGA</li> <li>7.1.1 Procedimento de Análise de Fadiga baseado no Critério do Acúmulo o</li> <li>7.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Admissível .</li> <li>CAPÍTULO VIII.</li> <li>8.1 PROPOSTAS DE NOVOS ESTUDOS E CONCLUSÃO.</li> <li>CAPÍTULO IX.</li> <li>9.1 REFERÊNCIAS BIBLIOGRÁFICAS</li></ul>                                                                                                                                                                                                                                                                                                                                                                              | missível<br>165<br>177<br>177<br>de Dano<br>177<br>179<br>184<br>184<br>185<br>185<br>188                                                         |
| 6.1.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Ad<br>CAPÍTULO VII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | missível<br>165<br>177<br>177<br>de Dano<br>177<br>179<br>184<br>184<br>185<br>185<br>188<br>188                                                  |
| 6.1.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Ad<br>CAPÍTULO VII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | missível<br>165<br>177<br>177<br>de Dano<br>177<br>179<br>184<br>184<br>185<br>185<br>188<br>188                                                  |
| <ul> <li>6.1.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Ad</li> <li>CAPÍTULO VII</li> <li>7.1 APLICAÇÃO DOS PROCEDIMENTOS DE FADIGA</li> <li>7.1.1 Procedimento de Análise de Fadiga baseado no Critério do Acúmulo o</li> <li>7.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Admissível .</li> <li>CAPÍTULO VIII.</li> <li>8.1 PROPOSTAS DE NOVOS ESTUDOS E CONCLUSÃO.</li> <li>CAPÍTULO IX.</li> <li>9.1 REFERÊNCIAS BIBLIOGRÁFICAS</li> <li>CAPÍTULO X</li> <li>10.1 APÊNDICES</li> <li>10.1.1 Caso de carregamento do projeto executado – Estudo de Caso 5.1</li> <li>10.1.2 Caso de carregamento do projeto executado – Estudo de Caso 5.2</li> </ul>                                                                                                                                                                   | missível<br>165<br>177<br>177<br>de Dano<br>177<br>179<br>184<br>184<br>185<br>185<br>188<br>188<br>188<br>188<br>188                             |
| <ul> <li>6.1.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Ad</li> <li>CAPÍTULO VII</li> <li>7.1 APLICAÇÃO DOS PROCEDIMENTOS DE FADIGA</li> <li>7.1.1 Procedimento de Análise de Fadiga baseado no Critério do Acúmulo o</li> <li>7.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Admissível .</li> <li>CAPÍTULO VIII</li> <li>8.1 PROPOSTAS DE NOVOS ESTUDOS E CONCLUSÃO.</li> <li>CAPÍTULO IX.</li> <li>9.1 REFERÊNCIAS BIBLIOGRÁFICAS</li> <li>9.1 REFERÊNCIAS BIBLIOGRÁFICAS</li> <li>10.1 APÊNDICES</li> <li>10.1.1 Caso de carregamento do projeto executado – Estudo de Caso 5.1</li> <li>10.1.2 Caso de carregamento do projeto executado – Estudo de Caso 5.2</li> <li>10.1.3 Caso de carregamento do projeto executado – Estudo de Caso 5.3</li> <li>10.1.4 Determinação da Tensão de Fadiga pelo CAESAR II</li> </ul> | missível<br>165<br>177<br>177<br>de Dano<br>177<br>179<br>184<br>184<br>185<br>185<br>185<br>188<br>188<br>188<br>188<br>188<br>199<br>203<br>212 |

# LISTA DE ILUSTRAÇÕES

| Fig. | 1 Vista em planta de um navio FPSO com os vários módulos de processo e utilidades,<br>bem como o <i>pipe rack</i> disposto ao longo do navio – Fonte: (S/D)      |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fig. | 2 Esquemático das várias solicitações às quais estão submetidas tubulações <i>on</i> e <i>offshore</i> .<br>                                                     |
| Fig. | 3 Fator de redução da tensão por número de ciclos. Fonte: (ASME B31.3, 2018)22                                                                                   |
| Fig. | 4 Curvas S-N para peças expostas ao ar. Fonte: (DNV RP C203, 2010)29                                                                                             |
| Fig. | 5 Ciclos de tensão onde a avaliação à fadiga pode ser omitida. Fonte: (DNV RP C203, 2010)                                                                        |
| Fig. | 6 Ciclos de tensão onde é necessária uma avaliação detalhada à fadiga. Fonte: (DNV RP C203, 2010)                                                                |
| Fig. | 7 Curvas S-N de aços <i>ferríticos</i> até 350°C, aços inox <i>austeníticos</i> até 430°C e ligas de alumínio até 100°C. Fonte: (BS PD 5500, 1997)               |
| Fig. | 8 Curva de fadiga para materiais com módulo de elasticidade igual a 209.000 N/mm2<br>Fonte: IGE / TD / 12, 2013                                                  |
| Fig. | 9 Tensões induzidas pelas ondas e pelos ciclos de armazenamento e descarregamento (ABS, 2018)                                                                    |
| Fig. | 10 Superposição das tensões induzidas pelas ondas em um ciclo de armazenamento e descarregamento (ABS, 2018)47                                                   |
| Fig. | 11 Curvas obtidas dos resultados dos ensaios do grupo PRG. Fonte: (GRUPO PRG, 2008)                                                                              |
| Fig. | 12 Indicação dos campos de exploração de óleo e gás da Bacia de Santos localizados na<br>Bacia de Santos. Fonte: (S/D)                                           |
| Fig. | 13 Nomenclatura dos movimentos da embarcação (Fonte: <i>A Six Degrees of Freedom Ship Simulation System for Maritime Education</i> , 2010)60                     |
| Fig. | 14 Gráfico do ciclo de tensão devido à temperatura (LCF – <i>Low Cycle Fatigue</i> ) e devido aos deslocamentos e acelerações (HCF – <i>High Cycle Fatigue</i> ) |
| Fig. | 15 Navio submetido às condições de <i>tosamento</i> (a) e alquebramento (b), devido à passagem de uma onda (MENDONÇA, 2016)                                      |
| Fig. | 16 RAO de <i>roll</i> e <i>pitch</i> para os cascos FPSO-BR MC, FPSO-BR P57 e FPSO convencional P54 (SENRA, 2011)                                                |
| Fig. | 17 Gráfico da distribuição do dano para diferentes variações de tensões da curva D72                                                                             |
| Fig. | 18 Gráfico da distribuição do dano para diferentes variações de tensões da curva F373                                                                            |

| Fig. | 19 Gráfico da distribuição do dano para diferentes curvas de fadiga (F3 e D) da DNV RP C-203 para $\Delta \sigma = 60$ MPa                                                        |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fig. | 20 Distribuição do dano para diferentes agrupamentos de alturas de onda75                                                                                                         |
| Fig. | 21 Dano total para três diferentes agrupamentos de alturas de onda para a curva F3 da DNV RP C203, em função da tensão produzida pela onda centenária                             |
| Fig. | 22 Dano total para três diferentes agrupamentos para a curva D da DNV RP C20377                                                                                                   |
| Fig. | 23 Comparativo de dano total entre a curva F3 e D da DNV RP C203 para agrupamento de altura de onda de 0,5 em 0,5 metros                                                          |
| Fig. | 24 Equações para obtenção dos fatores intensificadores de tensão e flexibilidade de uma curva forjada (ASME B31.3, 2018). Fonte: (S/D)                                            |
| Fig. | 25 Equações para obtenção dos fatores intensificadores de tensão e flexibilidade de uma curva forjada. Fonte: (ASME B31.J, 2017)                                                  |
| Fig. | 26 Orientação dos planos para a curva. Fonte: (ASME B31.3, 2018)81                                                                                                                |
| Fig. | 27 Gráfico dos fatores intensificadores de tensões e flexibilidade. Fonte: (ASME B31.3, 2018)                                                                                     |
| Fig. | 28 Equações para determinação dos fatores intensificadores de tensões e flexibilidade (ASME B31.3, 2018)                                                                          |
| Fig. | 29 Equações para determinação dos fatores intensificadores de tensões e flexibilidade.<br>Fonte: (ASME B31.J, 2017)                                                               |
| Fig. | 30 Comparativo - Fatores intensificadores de tensões e flexibilidade (ASME B31.J x<br>ASME B31.3)                                                                                 |
| Fig. | 31 Arranjo geral da linha do flare extraído do software CAESAR II – Tubulação de 30".<br>Fonte: (S/D)                                                                             |
| Fig. | 32 Destaque para o nó 17680 de maior tensionamento da tubulação para o movimento de <i>roll</i> extraído do software CAESAR II – Tubulação de 30" - <i>Flare</i> . Fonte: (S/D)90 |
| Fig. | 33 Destaque para o nó 17210 de maior tensão da tubulação para o movimento de pitch extraído do software CAESAR II – Tubulação de 30" - Flare. Fonte: (S/D)91                      |
| Fig. | 34 Cota entre o ponto de derivação da linha do flare e a linha média do navio. Fonte:<br>(S/D)                                                                                    |
| Fig. | 35 Destaque para o nó 17450 de maior tensão da tubulação para os deslocamentos estruturais extraído do software CAESAR II – Tubulação de 30" - Flare. Fonte: (S/D). 93            |
| Fig. | 36 Arranjo geral da análise extraído do software CAESAR II – Tubulação de 4". Fonte: (S/D)                                                                                        |

| Fig. 3 | <ul> <li>B7 Destaque para o nó 2525 e 2530 de maior tensionamento da tubulação para os casos de aceleração e deslocamentos estruturais, respectivamente – Tubulação de 4". Fonte: (S/D).</li> <li>(S/D).</li> </ul> |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fig. 3 | 38 Distribuição do dano para a linha do flare obtidas de acordo com o CAESAR II e calculada a paritr da curva S-N (F3)98                                                                                            |
| Fig. 3 | 39 Distribuição do dano para a linha de 4" obtidas de acordo com o CAESAR II e curva<br>F3                                                                                                                          |
| Fig. 4 | 40 Arranjo geral da análise extraído do software CAESAR II. Fonte: (S/D) 101                                                                                                                                        |
| Fig. 4 | 41 Input de valores dos vetores das acelerações do software CAESAR II                                                                                                                                               |
| Fig. 4 | 42 Indicação da conexão tipo "tê" na qual foi encontrado o dano de 3,67 de acordo com o projeto executado. Fonte: (S/D)                                                                                             |
| Fig. 4 | 43 Detalhe dos acessórios presentes no arranjo da tubulação. Fonte: (S/D)108                                                                                                                                        |
| Fig. 4 | 44 Arranjo geral da análise do arranjo 1 extraído do software CAESAR II. Fonte: (S/D).<br>                                                                                                                          |
| Fig. 4 | 45 Detalhe para o ponto nodal 5020 de ocorrência do dano de 0,80. Fonte: (S/D) 113                                                                                                                                  |
| Fig. 4 | 46 Arranjo geral da análise do arranjo 2 extraído do software CAESAR II. Fonte: (S/D).<br>                                                                                                                          |
| Fig. 4 | 47 Detalhe para o ponto nodal 25 de ocorrência do dano de 0,77. Fonte: (S/D)                                                                                                                                        |
| Fig. 4 | 48 Arranjo geral da análise do arranjo 3, com detalhe para a linha de Ø20", extraído do<br>software CAESAR II. Fonte: (S/D)116                                                                                      |
| Fig. 4 | 49 Detalhe para o ponto nodal 3020 de ocorrência do dano de 0,71. Fonte: (S/D) 117                                                                                                                                  |
| Fig. 5 | 50 Vista isométrica da Análise 3 de injeção de água e remoção de sulfato. Fonte: (S/D).<br>                                                                                                                         |
| Fig. 5 | 51 Vista isométrica do sistema de alimentação de água. As tubulações sem indicação possuem diâmetro nominal de 8". Fonte: (S/D)                                                                                     |
| Fig. 5 | 52 Detalhe para o nó 1469, correspondente ao ponto médio da curva. Fonte: (S/D) 122                                                                                                                                 |
| Fig. 5 | 53 Imagem isométrica do arranjo geral do sistema analisado. Detalhe para a curva do nó<br>80 abordada neste estudo de caso. Fonte: (S/D)124                                                                         |
| Fig. 5 | 54 Detalhe da diferença de raio de curvatura entre a curva de raio longo (à esquerda) e a curva 5D (à direita) representada no nó 80 da análise de flexibilidade. Fonte: (S/D)125                                   |
| Fig. 5 | 55 Equações para obtenção dos fatores intensificadores de tensão e flexibilidade de uma curva forjada (ASME B31.3, 2018). Fonte: S/D)126                                                                            |
| Fig. 5 | 56 Comparativo de resultados de dano acumulado extraído do software de análise de tensões CAESAR II. Fonte: (S/D)127                                                                                                |

| Fig. | 57 Vista isométrica do arranjo geral do sistema de tubulações extraído do <i>software</i> CAESAR II. Fonte: (S/D)128                               |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Fig. | 58 Detalhe da tomada adequadamente suportada – Cenário 1. Fonte: (S/D)129                                                                          |
| Fig. | 59 Suporte tipo trava removido do trunnion soldado à curva forjada – Cenário 2. Fonte: (S/D)                                                       |
| Fig. | 60 Suporte tipo trava e guia removidos da tomada de água – Cenário 3. Fonte: (S/D)131                                                              |
| Fig. | 61 Na parte superior da figura, observa-se o dano acumulado para o Cenário 2, enquanto que a parte inferior refere-se ao Cenário 3. Fonte: (S/D)   |
| Fig. | 62 Detalhe da conexão entre o header e a derivação. Fonte: (S/D)132                                                                                |
| Fig. | 63 Arranjo geral do sistema analisado extraído do software CAESAR II. Fonte: (S/D).<br>                                                            |
| Fig. | 64 Destaque para o nó 3020, ponto de ocorrência do maior dano da análise. Fonte: (S/D).<br>                                                        |
| Fig. | 65 Conexão tipo weldolet soldada (MSS_SP_97, 2012). Fonte: (S/D)                                                                                   |
| Fig. | 66 Detalhe da tomada para a instrumentação de 1" derivando da linha tronco de 8".<br>Fonte: (S/D)                                                  |
| Fig. | 67 Vista isométrica do arranjo geral do sistema de tubulações extraído do software<br>CAESAR II. Fonte: (S/D)                                      |
| Fig. | 68 Detalhe do "tê" de redução de 8"x 6" indicado em amarelo e representado pelo nó 540 da análise de flexibilidade (CAESAR II, 2014). Fonte: (S/D) |
| Fig. | 69 Detalhe dos fatores SIF's considerados para a linha tronco e derivação pelo software CAESAR II, conforme a norma ASME B31.3. Fonte: (S/D)       |
| Fig. | 70 Input de fatores no software conforme ASME B31.J para a linha tronco (CAESAR II, 2014)                                                          |
| Fig. | 71 Input de fatores no software conforme ASME B31.J para a derivação (CAESAR II, 2014)                                                             |
| Fig. | 72 Vista isométrica do sistema de processo – Análise 1 (CAESAR II, 2014). Fonte:<br>(S/D)                                                          |
| Fig. | 73 Vista isométrica do sistema de flare de baixa – Análise 2 (CAESAR II, 2014). Fonte:<br>(S/D)                                                    |
| Fig. | 74 Vista isométrica do sistema de flare de alta pressão – Análise 3 (CAESAR II, 2014).<br>Fonte: (S/D)                                             |
| Fig. | 75 Detalhe da junta soldada abrangida pela curva F3. Fonte: (DNV RP C203, 2014)153                                                                 |
| Fig. | 76 Proposta de método para determinação da tensão admissível. Fonte: (S/D)171                                                                      |

| Fig. | 77 Indicação da conexão tipo "tê" na qual foi encontrado o dano de 3,67 de acordo com o projeto executado. Fonte: (S/D) |
|------|-------------------------------------------------------------------------------------------------------------------------|
| Fig. | 78 Indicação da posição dos quatro pontos da seção transversal (Caesar II User's Guide, 2019). Fonte:                   |
| Fig. | 79 Determinação das tensões principais nos quatro pontos da seção transversal (Caesar II<br>User's Guide, 2019). Fonte: |

## LISTA DE TABELAS

| Tabela 1 Dados de curvas S-N para peças expostas ao ar                                                                           | 27          |
|----------------------------------------------------------------------------------------------------------------------------------|-------------|
| Tabela 2 Categorias de curvas S-N para uniões soldadas de seções ocas                                                            | 30          |
| Tabela 3 Classificação de juntas soldadas de topo                                                                                | 32          |
| Tabela 4 Constante das curvas de fadiga de acordo com a quantidade de ciclos                                                     | 37          |
| Tabela 5 Classificação dos detalhes das soldas                                                                                   | 37          |
| Tabela 6 Fator de projeto à fadiga                                                                                               | 40          |
| Tabela 7 Classes de fadiga dos componentes                                                                                       | 41          |
| Tabela 8 Constantes das curvas de fadiga                                                                                         | 42          |
| Tabela 9 Classes de fadiga (FAT) para algumas configurações de junta                                                             | 48          |
| Tabela 10 Comparação entre critérios de projeto para tubulações em FPSOs                                                         | 53          |
| Tabela 11 Casos de carregamentos – Fadiga Térmica                                                                                | 57          |
| Tabela 12 Condições de análise segundo os dados de acelerações                                                                   | 59          |
| Tabela 13 Acelerações inerciais para DOC informadas no Acceleration Data                                                         | 61          |
| Tabela 14 Composição de acelerações (DOC).                                                                                       | 61          |
| Tabela 15 Combinação dos vetores acelerações                                                                                     | 61          |
| Tabela 16 Range dos casos de tensões das acelerações combinadas                                                                  | 64          |
| Tabela 17 Casos de carregamentos - Acelerações                                                                                   | 65          |
| Tabela 18 Distribuição de alturas significativas e períodos de pico de ondas na região cer<br>da Bacia de Santos, Metocean Data. | ntral<br>68 |
| Tabela 19 Determinação do fator de altura de onda para a Bacia de Santos                                                         | 71          |
| Tabela 20 Fator de altura de onda para o Grupo 1.                                                                                | 75          |
| Tabela 21 Fator de altura de onda para o Grupo 2. Fonte:                                                                         | 76          |
| Tabela 22 Fator de altura de onda para o Grupo 3. Fonte:                                                                         | 76          |
| Tabela 23 Dimensional da conexão                                                                                                 | 82          |
| Tabela 24 Acelerações inerciais para o pipe rack em DOC e DEC                                                                    | 87          |

| Tabela 25 Composição de acelerações (DOC/DEC).    88                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tabela 26 - Determinação dos fatores de altura de onda considerados no projeto executado. 88                                                                                                          |
| Tabela 27 Casos de carregamentos editados para determinação das tensões devido às acelerações e deslocamento isoladamente e dano devido somente aos deslocamentos estruturais – Dano à fadiga (Flare) |
| Tabela 28 - Tensões devido às acelerações e deslocamentos (Flare).    89                                                                                                                              |
| Tabela 29 Separação das tensões entre acelerações e deslocamentos (Linha 4")94                                                                                                                        |
| Tabela 30 Separação dos danos por faixa de altura de onda para acelerações e deslocamentos.                                                                                                           |
| Tabela 31 Separação dos danos por faixa de altura de onda somente devido aos deslocamentos                                                                                                            |
| Tabela 32 Cálculo com base na curva F3 para obtenção do dano devido aos deslocamentos –         Linha do <i>flare</i> .                                                                               |
| Tabela 33 Cálculo com base na curva F3 para obtenção do dano devido aos deslocamentos –      Linha de 4"                                                                                              |
| Tabela 34 Resultados de danos isolados para aceleração e deslocamentos de acordo com o CAESAR II                                                                                                      |
| Tabela 35 Comparativo de tensões para acelerações DOC e DEC para as linhas do flare e de 4".                                                                                                          |
| Tabela 36 Comparativo de resultados de dano para acelerações DOC e DEC para as linhas do flare e de 4".       100                                                                                     |
| Tabela 37 Acelerações inerciais para o pipe rack em DOC e DEC102                                                                                                                                      |
| Tabela 38 Aplicação das acelerações aos casos de carregamentos para DOC e DEC 102                                                                                                                     |
| Tabela 39 Determinação dos fatores de altura de onda considerados no projeto executado103                                                                                                             |
| Tabela 40 Resumo dos casos de carregamentos considerados para a determinação do dano à<br>fadiga no projeto executado                                                                                 |
| Tabela 41 - Separação dos danos por altura de onda devido às acelerações e deslocamentos.                                                                                                             |
| Tabela 42 - Separação dos danos por fonte de fadiga.    107                                                                                                                                           |
| Tabela 43 Resultado do dano com fator de altura aplicado aos deslocamentos e acelerações.         109                                                                                                 |
| Tabela 44 Separação dos danos para acelerações e deslocamentos com agrupamento de 1 em1 metro                                                                                                         |

| Tabela 45 Comparativo entre fatores de altura de variados projetos e para o agrup. de 1 em 1      metro  |
|----------------------------------------------------------------------------------------------------------|
| Tabela 46 Dano obtido para a fadiga térmica e combinação das acelerações e deslocamentos.                |
| Tabela 47 Dano obtido para a fadiga térmica e combinação das acelerações e deslocamentos.<br>            |
| Tabela 48 - Dano obtido para a fadiga térmica e combinação das acelerações e deslocamentos.         116  |
| Tabela 49 Separação de dano por faixa de altura e número de ciclos.       118                            |
| Tabela 50 Casos de carregamentos – Aceleração crítica                                                    |
| Tabela 51 - Casos de carregamentos – Aceleração crítica                                                  |
| Tabela 52 Resultados de tensões para as acelerações combinadas                                           |
| Tabela 53 -Casos de carregamentos de fadiga para as acelerações combinadas                               |
| Tabela 54 - Caso de carregamento – Aceleração crítica                                                    |
| Tabela 55 Comparativo de resultados dos danos123                                                         |
| Tabela 56 Determinação dos fatores de flexibilidade e intensificação de tensões (SIF) para curva forjada |
| Tabela 57 Comparativo de resultados – Curva 1,5D x 5D127                                                 |
| Tabela 58 Comparativo de resultados dos cenários estudados.    132                                       |
| Tabela 59 Comparativo de resultados analisados136                                                        |
| Tabela 60 Dimensional da conexão                                                                         |
| Tabela 61 Comparativo entre SIF's (ASME B31.3 x ASME B31.J)                                              |
| Tabela 62 Comparativo de resultados analisados.    141                                                   |
| Tabela 63 Caso de carregamento suscetível ao efeito de não linearidades                                  |
| Tabela 64 Comparativo de resultados de tensões – Análise 1146                                            |
| Tabela 65 Comparativo de resultados de tensões – Análise 2147                                            |
| Tabela 66 Comparativo de resultados de tensões – Análise 3147                                            |
| Tabela 67 Combinação dos vetores acelerações151                                                          |
| Tabela 68 Distribuição de alturas e períodos de ondas                                                    |

| Tabela 69 Fator de altura de onda proposto.    155                                                                 |
|--------------------------------------------------------------------------------------------------------------------|
| Tabela 70 Procedimento de análise de fadiga baseado no critério do Acúmulo de Dano156                              |
| Tabela 71 Casos de carregamentos – Critério do Acúmulo de Dano157                                                  |
| Tabela 72 Agrupamento de altura de onda de 0,5 em 0,5 metro.    169                                                |
| Tabela 73 Procedimento de análise de fadiga baseado no critério da Tensão Admissível 169                           |
| Tabela 74 Casos de carregamentos – Critério da Tensão Admissível172                                                |
| Tabela 75 Resultado de dano com fator de altura aplicado somente para os deslocamentos. 177                        |
| Tabela 76 Resultado de dano com fator de altura aplicado para os deslocamentos e acelerações                       |
| Tabela 77 3D stress intensity para deslocamentos                                                                   |
| Tabela 78 3D stress intensity para acelerações.    179                                                             |
| Tabela 79 Médias das tensões - Acelerações180                                                                      |
| Tabela 80 Somatório das tensões de deslocamentos e acelerações para DOC e DEC180                                   |
| Tabela 81 Dano acumulado a partir da Curva S-N180                                                                  |
| Tabela 82 Dano Caesar x Dano Curva S-N181                                                                          |
| Tabela 83 Tensão admissível para dano total de 0,6.    181                                                         |
| Tabela 84 Tensão admissível para dano total aproximado de 1,0 com agrupamento de alturade onda de 0,5 em 0,5 metro |

### CAPÍTULO I

### 1.1 INTRODUÇÃO

Com a descoberta do pré-sal, os investimentos em novas plataformas de petróleo se tornaram mais intensos entre os anos de 2011 e 2015. A grande demanda fez com que várias empresas projetistas desenvolvessem seus projetos de tubulações paralelamente e de forma independente. Até então, a inexistência de normas específicas, e também, de um procedimento padrão para cálculo de fadiga de tubulações em instalações *offshore* fez com que diferentes metodologias fossem utilizadas pelas empresas projetistas, que empregam muitas vezes a norma ASME B31.3 ou critérios baseados em recomendações de códigos da DNV aplicadas às áreas naval e de estruturas, tendo como consequências o aumento do prazo de execução e encarecimento do projeto de tubulações.

Desta forma, torna-se necessário evitar diferentes formas de interpretação e execução do cálculo de fadiga, principalmente para os sistemas de tubulação que integram módulos distintos de uma plataforma do tipo FPSO (*Floating Production Storage and Offloading*), e que estejam sujeitos às ações do movimento relativo entre módulos e sob a ação das ondas. A Figura 1 mostra uma vista em planta de um navio FPSO com os diferentes módulos e o *pipe rack* dispostos ao longo do navio. A questão abrange a padronização da entrada de dados de acelerações e deslocamentos estruturais, o método de execução do cálculo, a definição dos casos de carga e do número de ciclos de cada tipo de fonte de fadiga, bem como a escolha da curva de fadiga adequada a um determinado sistema de tubulações.

Um exemplo a ser destacado é a norma americana ASME B31.3, sendo a referência de uma das principais normas sobre tubulações de processo. Esta considera que a análise de fadiga deve ser realizada em cada sistema de tubulação, incluindo todos os seus componentes e juntas, e abarcando as tensões resultantes em seus acessórios, para determinar sua capacidade de operar nas condições de funcionamento especificadas no projeto, compreendendo sua ciclicidade.

Neste cenário *offshore*, é preciso entender os inúmeros fatores causadores de fadiga, aos quais estão sujeitas as tubulações. Dentro disto, devem ser consideradas no projeto à fadiga, as tensões devido às variações de temperatura e pressão, e a ação das ondas sobre a plataforma que causam deslocamentos e acelerações nas tubulações.

Dentro de uma unidade FPSO, alguns itens devem ser previstos:

 os deslocamentos sofridos pelo *pipe rack*, devido aos movimentos de *sagging* e *hogging* da embarcação, que são transmitidos para as tubulações através de seus suportes, levando em consideração que estes submetem as tubulações ao processo de fadiga, além da imposição de tensões e carregamentos aos bocais dos equipamentos;

- o navio e tudo o que está presente nele está submetido às acelerações devido às ondas do mar, que gerarão carregamentos nas tubulações, sendo, consequentemente, mais uma fonte de tensões cíclicas que podem causar falhas por fadiga;
- os carregamentos devido ao escoamento multifásico.



Fig. 1 Vista em planta de um navio FPSO com os vários módulos de processo e utilidades, bem como o *pipe rack* disposto ao longo do navio – Fonte: (S/D).

Além dos itens citados anteriormente, é importante registrar que sistemas de tubulações *offshore* também estarão submetidos aos variados fenômenos operacionais que podem ser observados no fluxograma da Figura 2.



Fig. 2 Esquemático das várias solicitações às quais estão submetidas tubulações on e offshore.

Ao longo dos variados projetos *offshore* executados até os dias atuais, diferentes procedimentos têm sido adotados para o cálculo do dano devido aos diversos fatores causadores de fadiga. Sendo assim, dentre os propósitos desta dissertação, o objetivo principal é a criação de uma proposta de procedimento de análise de fadiga, sendo uma baseada no critério do acúmulo de dano e a outra baseada no critério da tensão admissível. A metodologia levará em consideração a ação das ondas e dos deslocamentos relativos entre diferentes pontos da plataforma e seus efeitos sobre as tubulações, principalmente sobre aquelas que se estendem por mais de um módulo do FPSO.

Uma série de conclusões foi obtida com a revisão bibliográfica e os estudos de casos apresentados nesta dissertação. Puderam ser avaliados a relação do arranjo, do tipo de acessório, da capacidade de suporte e os métodos de combinação de carregamentos com os resultados das análises de fadiga. Além disto, foi realizado um estudo comparativo dos diferentes procedimentos de análise de fadiga em tubulações *offshore* a fim de constatar possíveis

divergências de metodologia e parâmetros considerados em projetos de engenharia já executados.

O capítulo II desta dissertação trata da revisão da literatura técnica sobre fadiga de tubulações além de abordar uma revisão dos procedimentos adotados em diferentes projetos de tubulações de unidades flutuantes do tipo FPSO. Esta etapa é de fundamental importância para atingir os objetivos do projeto, pois os fundamentos para o desenvolvimento de um procedimento padrão de projeto à fadiga de tubulações *offshore* serão em grande parte estabelecidos com base na presente revisão.

O processo de fadiga está totalmente atrelado aos níveis de tensões às quais um sistema de tubulações está submetido. Sendo assim, uma análise comparativa dos fatores intensificadores de tensões e flexibilidade entre as normas ASME B31.3, publicada no ano de 2018, e a ASME B31.J de 2017 é demonstrada no Capítulo III.

No Capítulo IV, são abordadas algumas das principais fontes de dano por fadiga em tubulações *offshore*. Nesse capítulo também são realizadas algumas simulações através do *sotware* CAESAR II, com o objetivo de identificar o efeito das tensões e da curva de fadiga na distribuição de dano por faixa de altura de onda.

Um total de dez estudos de casos de projetos já executados de tubulações submetidas à fadiga são abordados no Capítulo V, no qual inúmeras simulações foram realizadas com o objetivo de que sejam identificadas as distribuições dos danos por faixa de altura de onda, efeito das curvas de fadiga D e F3 da norma DNV RP D203, destinada à avaliação de fadiga de estruturas *offshore* que traz recomendações em relação à análise de fadiga baseada em ensaios de fadiga e mecânica da fratura, bem como as relações entre o arranjo, a *suportação*, as características dos acessórios e outras variantes com o processo de fadiga.

O Capítulo VI traz o principal objetivo desta dissertação, que são as propostas de procedimentos de análise de fadiga baseada no critério do acúmulo de dano e, principalmente, a proposta baseada no critério da tensão admissível. Este último, busca uma redução significativa da quantidade de casos de carregamentos que deverão ser aplicados ao *software* de análise de tensões, aliado à uma avaliação mais precisa, na qual é aplicado o agrupamento de altura de onda de 0,5 em 0,5 metro. Além disso, são abordados nesse capítulo os diversos parâmetros que envolvem a análise de fadiga, tais como definição da vida útil, curva de fadiga, número de ciclos, fatores de altura de onda, dano admissível, entre outros.

No Capítulo VII são apresentados os resultados obtidos a partir da aplicação das propostas de procedimento de análise de fadiga, tanto a partir do critério do acúmulo de dano, no qual uma redução significativa do dano calculado a partir da aplicação dos fatores de altura para as acelerações é demonstrada, quanto para o critério baseado no cálculo da tensão admissível, para o qual é demonstrado um comparativo do resultado de dano entre o obtido no software de análise de tensões e o cálculo a partir da curva S-N.

Finalmente, novas propostas de estudos e a conclusão do trabalho realizado são abordadas no capítulo VIII.

### **CAPÍTULO II**

## 2.1 NORMAS E DOCUMENTOS TÉCNICOS RELEVANTES AO CÁLCULO DE FADIGA EM TUBULAÇÕES *OFFSHORE*

Este capítulo apresenta uma revisão sobre as principais normas utilizadas no projeto à fadiga de tubulações instaladas em unidades flutuantes do tipo FPSO. Foram consideradas somente as seções das normas mais relacionadas com o tema "Cálculo de Fadiga em Tubulações *Offshore*". Nesta altura, faz-se necessário ressaltar que algumas partes das normas reproduzidas neste trabalho possuem, exclusivamente, o objetivo de melhorar o entendimento dos procedimentos recomendados nos códigos de projeto revisados.

As entidades consultadas foram: ABS (American Bureau of Shipping), API (American Petroleum Institute), ASME (American Society of Mechanical Engineers), BSI (British Standards Institution), CONCAWE (Conservation of Clean Air and Water in Europe), DNV (Det Norske Veritas), IGE (Institute of Gas Engineers), NORSOK (Norsok Sokkels Konkurranseposisjon), UKOOA (United Kingdom Offshore Operators Association).

As seguintes normas e documentos técnicos foram considerados:

- ASME B31.3 Piping Process (2018);
- ASME B31.3 Appendix W High Cycle Fatigue (2018);
- ASME B31J Stress Intensification Factors, Flexibility Factors (2017);
- DNV RP C203 Fatigue Design of Offshore Steel Structures (2010);
- DNV RP D101 Structural Analysis of Piping Systems (2017);
- DNV OS C101 Design of Offshore Steel Structures, General LRDF Method (2016);
- BS PD 5500 Unfired Fusion Welded Pressure Vessels (1997);
- IGE / TD / 12 Pipework Stress Analysis for Gas Industry Plant. Recommendations on Transmission and Distribution Practice (2013);
- UKOOA FPSO Design Guidance Notes for UKCS Service (2002);
- ABS Spectral-Based Fatigue Analysis for Floating, Production, Storage and Offloading (FPSO) Installations (2018);
- IIW Recommendations for Fatigue Design of Welded Joints and Components (2008);
- API RP 14E Recommended Practice for Design and Installation of Offshore Production Platform Piping Systems.

#### 2.1 DNV RP D101 STRUCTURAL ANALYSIS OF PIPING SYSTEMS (2017)

Decidiu-se iniciar a apresentação da revisão normativa pela DNV RP D101 porque este código tem como objetivo propor as melhores práticas de projeto, consolidadas pela indústria europeia, para análise estrutural de sistemas de tubulações para o setor *offshore*, buscando preservar a vida, a propriedade e o meio ambiente. As aplicações típicas desta norma são tubulações em plataformas de óleo e gás, FPSOs, unidades de perfuração e instalações submarinas. Com relação ao projeto à fadiga de tubulações, destacam-se, nesta norma, as orientações quanto à identificação de tubulações expostas a falhas por fadiga e recomendações de normas para análise de fadiga, conforme descrito na seção 3.12 (*Fatigue Calculations*) do referido código.

Os seguintes sistemas de tubulação deverão ser avaliados quanto a possíveis danos por fadiga segundo a norma DNV RP D101:

- Tubulações conectadas a cabeças de poço na superfície ou a árvores de natal, em que acoplamentos flexíveis não são utilizados para absorver movimentos verticais;
- Tubulações dispostas em *pipe racks* entre duas plataformas;
- Tubulações dispostas ao longo de um FPSO, seja sobre o *deck* do navio ou no *pipe rack*, submetidas a deslocamentos verticais de *tosamento* e alquebramento nas operações de carregamento e descarregamento e, também, devido à ação das ondas do mar. Caso não haja informações específicas quanto aos deslocamentos, recomenda-se utilizar deslocamentos longitudinais de +/- 10 mm por 10 m devido à expansão e contração;
- Longos trechos de tubulações em FPSOs sem suportes ou trechos com válvulas e atuadores pouco suportados que sejam submetidos às acelerações da embarcação devido à ação das ondas do mar;
- Tubulações conectadas a bombas e compressores que induzem forçamentos de baixa frequência, podendo coincidir com a frequência natural de vibração do sistema;
- Tubulações de paredes finas em aço duplex com escoamento de gás em altas velocidades que podem estar sujeitos à fadiga acústica.

Nota-se que os deslocamentos devido às operações de armazenamento e descarregamento do navio são também considerados como possíveis causas de dano por fadiga em tubulações de FPSOs.

Na subseção 3.12.5 (*Recommended design codes and standards for fatigue analysis*), a norma DNV RP D101 recomenda os seguintes códigos para análise de fadiga:

- Para a investigação da fadiga devido somente ao efeito das ondas, o método de análise descrito na DNV RP C203 pode ser utilizado. Não é comum a consideração do DFF (*Design Fatigue Factors*) em todos os sistemas de tubulação do *topside*. Este recurso só é utilizado em linhas que possuem isolamento ou qualquer outro empecilho que dificulte a inspeção de trincas e corrosão. A norma DNV RP C203 se destina, principalmente a estruturas em aço e não tubulações, que além das acelerações e deformações induzidas pelas ondas do mar, também estão submetidas a outras fontes de fadiga, tais como variação de temperatura, transientes hidráulicos, escoamentos bifásicos, entre outros;
- A norma IGE / TD / 12 pode ser utilizada para a avaliação da fadiga de alta frequência devido às altas velocidades de escoamento de gás e vapor denominada fadiga acústica;
- Para fadiga acústica são recomendadas: CONCAWE Report 85/52 Acoustic Fatigue in Pipes (1985) e NORSOK L-002 (2016), Appendix A;
- O procedimento geral recomendado para análise de fadiga está descrito no British Pressure Vessel Code PD 5500 Specification for Unfired Fusion Welded Pressure Vessels, Annex C. O exemplo de cálculo W.6.2.3 (Tabelas W.6-4, W.6-5 e W.6-6 do código BS PD 5500) contém uma metodologia conservadora, onde são incluídas diversas fontes de fadiga (movimentos impostos, transientes de pressão, gradientes térmicos, entre outras), utilizando o método de cálculo de dano por fadiga de Palmgren-Miner.

Entre outras recomendações gerais, a DNV RP D101 alerta para o risco de falhas por fadiga induzidas por vibração. Recomenda que uma análise modal de todos os sistemas de tubulações seja realizada, sendo desejável uma frequência natural acima de 4 Hz para mitigar as circunstâncias em que a fadiga induzida por vibrações de baixas frequências possa ocorrer.

#### 2.2 ASME B31.3 PIPING PROCESS (2018)

Trata-se da norma mais utilizada no desenvolvimento de projetos, fabricação, construção e inspeção de tubulações de processo pressurizadas pertencentes a unidades de processamento. A última revisão da norma ASME B31.3 ocorreu em agosto de 2019, a qual deverá passar a ser

universalmente aplicada 6 meses após a data de sua publicação. Nesta revisão, foram acrescentadas algumas recomendações, principalmente no que diz respeito à questão da avaliação da fadiga em tubulações, pois se trata de um assunto pouco explorado por pesquisas do mesmo caráter. Tendo em vista o objetivo deste projeto, são aqui comentadas as recomendações desta norma com relação ao projeto à fadiga de tubulações.

## 2.2.1 Consideração da Fadiga Devido aos Ciclos de Temperatura – Conforme ASME B31.3

A primeira tratativa da norma ASME B31.3, referente à consideração da fadiga no estudo de flexibilidade, é dada no parágrafo 302.3.5. Neste, é apresentada a equação (EQ 1) para determinação da tensão admissível devido às tensões denominadas secundárias, como as originadas pela expansão ou contração térmica das tubulações.

$$S_A = f(1, 25S_C + 0, 25S_h)$$
 (EQ 1)

Onde:

S<sub>A</sub> – tensão admissível;

f – fator de redução de tensão em função do número de ciclos;

Sc – tensão admissível na temperatura ambiente;

Sh – tensão admissível na temperatura de projeto.

O fator de redução de tensão é dado pela curva da Figura 3 e pode ser calculado pela Equação 2 (EQ 2).

$$f = 6.0 \, (N)^{-0.2} \tag{EQ 2}$$

Onde:

N – número de ciclos esperados em toda a vida útil da tubulação.

Nos projetos em que são esperados um ciclo operacional por dia, o fator de redução de tensão f é igual a 1, ou seja, a ocorrência de um ciclo operacional por dia para uma vida útil da planta de processo de 20 anos, totalizando, assim, 7.300 ciclos.



Fig. 3 Fator de redução da tensão por número de ciclos. Fonte: (ASME B31.3, 2018).

A tensão calculada, devido aos deslocamentos da tubulação SE, não poderá exceder a tensão admissível SA. Quando a tensão SE varia devido à expansão térmica ou outros fatores, SE deve ser a máxima das tensões devido aos deslocamentos. Neste caso, o número de ciclos N pode ser calculado pela seguinte expressão:

$$N = N_{\rm E} + \sum (r_{\rm i}^5 N_{\rm i}) \tag{EQ 3}$$

Onde:

NE = número de ciclos de ocorrência da máxima tensão de deslocamento SE;

Ni = número de ciclos associado com a tensão de deslocamento Si;

ri = Si / SE;

Si = qualquer tensão devido a deslocamento menor do que a tensão SE; i = 1, 2, 3, ..., n.

Conclui-se, portanto, que existe a possibilidade das tensões, devido aos deslocamentos impostos às tubulações pelos movimentos de *sag* e *hog* do FPSO, serem considerados com as tensões de origem térmica, utilizando as equações 1 a 3 (EQ1-EQ3).

#### 2.2.2 Análise de Fadiga - Apêndice W (High Cycle Fatigue) - ASME B31.3

Uma análise de fadiga deve ser realizada em cada sistema de tubulação, incluindo todos os seus componentes e juntas, considerando as tensões resultantes em seus acessórios para determinar sua capacidade de operar nas condições de funcionamento cíclicas especificadas no projeto.

O apêndice W (*High Cycle Fatigue*) da norma ASME B31.3, relacionado à avaliação de fadiga de alto ciclo em sistemas de tubulação, foi adicionado nesta revisão, devendo ser usado quando o número de ciclos de tensão exceder 100.000. A norma também define, como ciclo de tensão significativa, a faixa de tensão calculada superior a 20,7 Mpa para aços *ferríticos* e *austeníticos*. Para outros materiais, ou quando expostos a ambientes corrosivos, todos os ciclos devem ser considerados como significativos, a menos que de outra forma documentado no projeto de engenharia. O Apêndice W considera que os procedimentos já existentes da norma para os cálculos da tensão admissível devido ao deslocamento (parágrafo 302 da norma ASME B31.3) e da faixa de tensão (parágrafo 319 da mesma norma) fornecem um método para avaliar os sistemas de tubulação quanto à fadiga, quando o número de ciclos de tensão significativos é menor ou igual a 100.000. As cargas cíclicas da tubulação podem ser devido à expansão térmica, vibração, cargas inerciais, movimento das ondas ou outras fontes.

É importante ressaltar que a fadiga, devido aos ciclos de pressão, não é considerada neste apêndice. Entretanto, precisa ser ponderada no projeto. Para abordar esta questão, os métodos descritos no capítulo IX ou na ASME BPVC, Seção VIII, Divisão 2 devem ser aplicados em sistemas de tubulações submetidos a ciclos de pressão. Além disso, as recomendações que este apêndice traz em relação ao projeto, à fabricação e aos testes devem ser acrescentados às recomendações requeridas nos capítulos I ao VI da norma ASME B31.3.

Outro ponto de curiosidade quanto a publicação da revisão de 2018 da norma ASME B31.3, refere-se ao fato de como seria abordada a questão dos fatores intensificadores de tensão e flexibilidade, uma vez que sofreram alguns ajustes trazidos pela norma ASME B31J publicada no ano de 2017. Curiosamente, o apêndice D da norma ASME B31.3 traz os mesmos fatores intensificadores de tensão e flexibilidade presentes em suas revisões anteriores. Entretanto,

recomenda-se a utilização dos fatores da norma ASME B31J nos casos a seguir. Segundo a ASME B31.3 (2018), o projetista pode usar os fatores de intensificação de tensão e os fatores de flexibilidade mais aplicáveis da ASME B31J em vez dos fatores mencionados no apêndice D da ASME B31.3 (2018), sendo incentivado a fazê-lo quando:

- $S_F > 0.5 S_A;$
- ciclos significativos estiverem presentes.

Lembrando que  $SF = S \cdot E \cdot W$ , onde:

S-tensão atuante;

E – fator de qualidade da junta soldada;

W – eficiência da junta.

No que se refere à fadiga devido às ondas, as acelerações devido a esta fonte de fadiga devem ser consideradas como carregamentos ocasionais e devem satisfazer os requerimentos do parágrafo 302.3.6 que, por sua vez, aborda a questão referente às considerações adotadas para este tipo de carregamento. O apêndice W faz uma divisão de abordagem entre duas situações distintas: a primeira, quando o sistema de tubulações está sujeito à carregamentos cíclicos devido às ondas; a segunda, quando não se tem a presença desta fonte de fadiga. Portanto, o procedimento de análise de fadiga varia de acordo com o tipo de carga cíclica: carregamento de fadiga onde o espectro de carregamento pode ser reduzido a uma série de faixas de tensão por número de ciclos; carregamento de fadiga onde o espectro de carregamento de fadiga onde o espectro de tensão *Weibull* de dois parâmetros (parâmetro de forma da distribuição da variação de tensão e parâmetro de distribuição de escala de variação de tensão). O dano por fadiga para os dois casos continua sendo baseado no somatório do dano de cada fonte de fadiga.

2.2.2.1 Dano à fadiga devido à faixa de tensões cíclicas de outras fontes de fadiga que não ondas

Neste caso a maior variação de tensão deve ser calculada de acordo com o parágrafo 319 da ASME B31.3 e deve atender aos requerimentos de variação de tensão do parágrafo 302.3.5, com f = 1,0. Os pares de faixa de tensão e número de ciclos (*SEi*, *Ni*) devem ser determinados com a utilização do método *rainflow* de contagem de ciclos da ASME BPV, Seção VIII, Div.

2, Anexo 5-B. Os ciclos de fadiga para cada caso de carregamento devem ser calculados de acordo com a equação (W1) do apêndice W.

O dano acumulado à fadiga para todas as fontes deve ser calculado conforme equação abaixo (EQ4), equação (W2) do apêndice W:

$$d_t = \sum \frac{Ni}{Nti}$$
(EQ4)

Onde:

dt - dano por fadiga, que deve ser inferior a 1.

Segundo o Apêndice W da ASME B31.3, quando o dano por fadiga for calculado de acordo com a EQ4, ciclos com faixa de tensão inferiores a 20,7 MPa não precisam ser considerados.

2.2.2.2 Dano à fadiga devido à faixa de tensões cíclicas devido às ondas

Nesta etapa, aborda-se a amplitude variável de carregamentos randômicos em que a distribuição da faixa de tensão de longa duração pode ser representada por uma distribuição de *Weibull* de dois parâmetros. Os requisitos específicos de aplicação são cargas de onda para sistemas presentes em instalações *offshore*. Entretanto, este método também pode ser utilizado em outras situações onde a distribuição de *Weibull* se aplica.

O estado de mar é caracterizado através de determinados parâmetros estatísticos, tais como altura e período de onda, representados no apêndice W por *h* e *Vo*, respectivamente. Quando utilizado para o movimento das ondas, o estado de mar do projeto deve ser especificado pelo detentor do mesmo. O estado de mar deve ser caracterizado por um diagrama de dispersão de ondas de dois parâmetros, altura significativa da onda e período de cruzamento zero. É importante ressaltar que a faixa de tensão é considerada proporcional à altura da onda, e o parâmetro de forma da distribuição de tensões do diagrama de *Weibull* e frequência de cruzamento zero são determinados a partir dos dados do estado do mar. A distribuição da faixa de tensão pode ser representada pela distribuição de *Weibull* de dois parâmetros, utilizando a equação (W3) do apêndice W.

2.2.2.3 Método de análise de fadiga alternativo

O apêndice W da norma ASME B31.3 recomenda a utilização da ASME BPVC, Seção VIII, Divisão 2, como um método alternativo de análise de fadiga em tubulações. De certa forma, esperava-se que o Apêndice W apresentasse um procedimento mais prático e usual que pudesse ser utilizado em projetos de engenharia que possuem a ASME B31.3 como código de projeto.

#### 2.3 DNV RP C203 FATIGUE DESIGN OF OFFSHORE STEEL STRUCTURES (2010)

A norma traz recomendações em relação à análise de fadiga baseada em ensaios de fadiga e mecânica da fratura. Destinada à avaliação de fadiga de estruturas *offshore*, tem como objetivo assegurar que determinada estrutura terá uma vida adequada à fadiga, além de proporcionar um programa de inspeção durante a vida operacional da estrutura. Para assegurar que uma estrutura irá cumprir a sua função adequadamente, a avaliação de fadiga deverá ser realizada de acordo com o detalhe estrutural, para cada componente submetido à carga cíclica. Qualquer elemento ou componente da estrutura, assim como toda junta soldada ou acessório, bem como qualquer outro ponto de concentração de tensões, é um local considerado com potencial para surgimento de trincas de fadiga, e deve ser individualmente avaliado.

Para investigação do efeito de fadiga sobre tubulações devido à ação das ondas, a metodologia descrita na DNV RP C203 (2010) pode ser utilizada. Entretanto, esta norma se destina principalmente a estruturas de aço e não a tubulações que, além dos deslocamentos e acelerações causados pela ação das ondas, podem sofrer com uma série de outras fontes de fadiga, como variações de temperatura, transientes de pressão, esforços gerados por escoamentos multifásicos, cargas vivas etc. (DNV RP D101, 2017).

A DNV RP C203 (2010) abrange estruturas de aço com limite de resistência ao escoamento menor que 960 MPa quando expostas ao ar. Esta norma também abrange materiais expostos à água salgada do mar, providos de proteção catódica ou livres do processo de corrosão, com limite de resistência ao escoamento até 550 MPa. Além destes materiais, esta norma também abrange aços inoxidáveis.

É importante se ater a questão da temperatura a qual o material estará submetido. Esta norma é válida até 100°C. Para temperaturas maiores que esta, deverá ser considerado o fator de redução que é dado por:

$$R_{\rm T} = 1,0376 - 0,239.10^{-3}T - 1,372.10^{-6}T^2$$
 (EQ5)

Onde:

T - temperatura em °C.

A redução da resistência da curva S-N (tensão versus número de ciclos) é dada por:

$$\log \bar{a}_{RT} = \log \bar{a} + m \log R_T \tag{EQ6}$$

Onde:

 $\log \bar{a}$  – constante do material (conforme a Tabela 1);

m – constante do material (conforme a Tabela 1);

 $R_{\rm T}$  – temperatura em que o material estará submetido;

 $\bar{a}_{RT}$  – fator de redução de temperatura.

A Tabela 1 retirada da norma DNV RP C203 traz os parâmetros das diferentes curvas de fadiga obtidas de acordo com o tipo do componente a ser avaliado. Neste caso, para peças expostas ao ar.

Tabela 1 Dados de curvas S-N para peças expostas ao ar.

| Curvas S-N no ar |                          |        |                   |                  |                                           |                                               |
|------------------|--------------------------|--------|-------------------|------------------|-------------------------------------------|-----------------------------------------------|
| Curva S-N        | N≤10 <sup>7</sup> ciclos |        | $N > 10^7$ ciclos | Limite de Fadiga | Expoente da espessura                     | Concentração de tensão<br>estrutural embutida |
|                  | m1                       | logði  | $m_2 = 5.0$       | de IU ciclos     | 2                                         | no detalhe (Classes S-N)                      |
| B1               | 4.0                      | 15.117 | 17.146            | 106.97           | 0                                         |                                               |
| B2               | 4.0                      | 14.885 | 16.856            | 93.59            | 0                                         |                                               |
| С                | 3.0                      | 12.592 | 16.320            | 73.10            | 0.15                                      |                                               |
| C1               | 3.0                      | 12.449 | 16.081            | 65.50            | 0.15                                      |                                               |
| C2               | 3.0                      | 12.301 | 15.835            | 58.48            | 0.15                                      |                                               |
| D                | 3.0                      | 12.164 | 15.606            | 52.63            | 0.20                                      | 1.00                                          |
| E                | 3.0                      | 12.010 | 15.350            | 46.78            | 0.20                                      | 1.13                                          |
| F                | 3.0                      | 11.855 | 15.091            | 41.52            | 0.25                                      | 1.27                                          |
| F1               | 3.0                      | 11.699 | 14.832            | 36.84            | 0.25                                      | 1.43                                          |
| F3               | 3.0                      | 11 546 | 14.576            | 32.75            | 0.25                                      | 1.61                                          |
| G                | 3.0                      | 11.398 | 14.330            | 29.24            | 0.25                                      | 1.80                                          |
| WI               | 3.0                      | 11.261 | 14.101            | 26.32            | 0.25                                      | 2.00                                          |
| W2               | 3.0                      | 11 107 | 13.845            | 23.39            | 0.25                                      | 2.25                                          |
| W3               | 3.0                      | 10.970 | 13.617            | 21.05            | 0.25                                      | 2.50                                          |
| Т                | 3.0                      | 12.164 | 15.606            | 52.63            | 0.25 for SCF ≤ 10.0<br>0.30 for SCF >10.0 | 1.00                                          |

#### Fonte: (DNV RP C203, 2010).

As curvas S-N só devem ser aplicadas quando as máximas tensões atuantes nos pontos críticos da peça forem inferiores à resistência ao escoamento do material, pois a análise de tensões utilizada neste método é linear elástica, uma vez que a DNV RP C203 (2010) tem o objetivo de avaliar o dano à fadiga de componentes submetidos a altos números de ciclos de variação de tensão.

#### 2.3.1 Curvas S-N

Destaca-se na revisão da norma DNV RP C203 (2010), a seção 2.4 (S-N curves). Esta norma aborda o dimensionamento à fadiga pelo método determinístico com emprego das curvas S- N, associadas a uma probabilidade de 97,7% do material não falhar, pois o teste considera uma tolerância média padrão. A norma classifica as juntas soldadas de acordo com o ambiente ao qual se encontram expostas, podendo ser no ar ou submersas no mar.

A curva S-N é representada como uma curva logarítmica, que pode ser expressa pela equação:

$$\log N = \log \bar{a} - m \log \Delta \sigma \tag{EQ7}$$

Onde:

N – número de ciclos até a falha para determinado  $\Delta \sigma$ ;

 $\Delta \sigma$  – variação de tensão;

m – coeficiente angular da curva S-N;

 $\log \bar{a}$  – ponto de interseção da curva S-N com o eixo log N.

As normas utilizadas em projetos *offshore* apresentam uma série de curvas S-N, com os detalhes típicos para estas estruturas classificadas de acordo com:

- a geometria do detalhe ou junta de conexão;
- direção de aplicação da variação de tensões;
- método de execução e nível de inspeção do detalhe;
- ambiente onde está a estrutura (ar/água);
- presença ou ausência de proteção contra corrosão (proteção catódica);
- tipo de junta soldada.

As tubulações destinadas a operar no casco e no convés do FPSO estão expostas ao ar. Sendo assim, a curva de interesse para estes casos será dada pela Figura 4 e Tabela 2, adaptadas da norma DNV RP C203 (2010) para fins de ilustração.



Fig. 4 Curvas S-N para peças expostas ao ar. Fonte: (DNV RP C203, 2010).
A DNV RP C203 (2010) define também a curva a ser utilizada de acordo com o tipo do detalhe do componente a ser avaliado. Como o presente trabalho trata da fadiga em tubulações, são apresentadas no Tabela 2 detalhes de componentes com seções ocas e suas respectivas categorias de curva de fadiga. A curva de fadiga F3, relativa a tubos com soldas circunferenciais de topo feitas por um lado, tem sido adotada no projeto a fadiga de tubulações em unidades flutuantes do tipo FPSO.





Fonte: (DNV RP C203, 2010).

# 2.3.2 Métodos de Análise de Fadiga

Segundo a DNV RP C203 (2010), a análise de fadiga deve ser baseada na curva S-N, determinada nos ensaios de fadiga de corpos de prova, sem especificar o tipo, submetidos a carregamentos cíclicos e na teoria do acúmulo linear de dano.

### 2.3.3 Cálculo do Dano Acumulado

O dano acumulado devido à ocorrência de cada grupo de ciclos de tensão j de mesma variação de tensão  $\Delta \sigma j$  pode ser calculado a partir da regra de Palmgren-Miner.

$$D = \sum_{j=1}^{k} \frac{n_j}{N_j} \le \eta \tag{EQ8}$$

Onde:

D-dano acumulado;

nj - número de ciclos de carregamento associado à tensão  $\sigma_j$ ;

Nj – número de ciclos para fratura por fadiga devido à tensão σj;

 $\eta$  – fator admissível = 1 (Design Fatigue Factor, DNV OS C101 Section 6 Fatigue Limit States, 2016);

k – número total de grupos de ciclos de tensão.

### 2.3.4 Tubulações e Risers

A norma DNV RP C203 (2010), em sua subseção 2.10.1 – *Stresses at girth welds in pipes and S-N* data, faz considerações sobre as tensões em juntas circunferenciais de tubulações. Para soldas com formatos assimétricos, deve ser incluído um fator de concentração de tensões para a raiz da solda de acordo com a excentricidade máxima permissível. Uma classificação das juntas circunferenciais de topo com suas respectivas curvas de fadiga e fatores de concentração de tensão é apresentada na Tabela 2.4 desta norma, aqui reproduzidos no Tabela 3. A norma DNV RP C203 (2010) também apresenta procedimentos para consideração da excentricidade de tubos sem costura em sua subseção 2.10.2.4.2.

| Description               | 2/2                   |                                |           |                      |              |
|---------------------------|-----------------------|--------------------------------|-----------|----------------------|--------------|
| Welding                   | Geometry and hot spot | Tolerance requirement          | S-N curve | Thickness exponent k | SCF          |
|                           |                       | δ≤min (0.15t, 3 mm)            | Fl        | 0.00                 | 1.0          |
| Single side               | Hot spot              | $\delta > \min(0.15t, 3 \min)$ | F3        | 0.00                 | 1.0          |
|                           | $\Box$                | δ≤min (0.1t, 2 mm)             | F         | 0.00                 | 1.0          |
| Single side<br>on backing | Hot spot              | $\delta > \min(0.1t, 2 \min)$  | Fl        | 0.00                 | 1.0          |
| Single side               | Hot spot              |                                | D         | 0.15                 | Eq. (2.10.1) |
| Double side               | Hot spot              |                                | D         | 0.15                 | Eq. (2.10.1) |

#### Tabela 3 Classificação de juntas soldadas de topo.

Fonte: (DNV RP C203, 2010).

### 2.3.5 Casos em que uma Análise de Fadiga Detalhada Pode Ser Omitida

A norma DNV RP C203 (2010), em sua seção 2.11 *Guidance to when a detailed fatigue analysis can be omitted*, considera que uma análise detalhada de fadiga pode ser omitida quando o pico real de tensão for menor do que o limite à fadiga para 107 ciclos, conforme Tabela 1 desta dissertação. Para DFF (*Design Fatigue Factor*) maior que 1, o fator admissível de dano acumulado deve ser reduzido por um fator dado na seção 2.11 da norma DNV RP C203 (2010). A norma DNV OS C101 (2016) deve ser consultada para definição do DFF.

O uso do limite de fadiga é ilustrado nas Figuras 5 e 6, reproduzidas da norma DNV RP C203 (2010). Caso haja pelo menos um ciclo de tensão acima do limite de fadiga, a análise detalhada à fadiga deverá ser realizada.



Fig. 5 Ciclos de tensão onde a avaliação à fadiga pode ser omitida. Fonte: (DNV RP C203, 2010).



Fig. 6 Ciclos de tensão onde é necessária uma avaliação detalhada à fadiga. Fonte: (DNV RP C203, 2010).

### 2.3.6 Fadiga de Alto e Baixo Ciclo

O apêndice D1 da DNV RP C203 (2010), Comm. 1.2.3 *Low cycle and high cycle fatigue*, faz algumas considerações sobre a possível combinação das fadigas de alto e de baixo ciclo devido, por exemplo, às ondas do mar muito severas. A operação de carregamento e descarregamento do FPSO também é citada como possível causa de fadiga de baixo ciclo em certos locais da estrutura do navio. Como a norma DNV RP C203 (2010) tem como objetivo principal tratar da fadiga de alto ciclo, as curvas S-N especificadas são mostradas nos gráficos para números de ciclos acima de 10<sup>4</sup>. No entanto, as curvas de fadiga podem ser extrapoladas para número de ciclos menores, embora este não seja um procedimento conservador. Desta forma, no Apêndice D1 da DNV RP C203 (2010), recomenda-se utilizar o procedimento descrito na norma NORSOK N-006 (2008) para tratar da fadiga de baixo ciclo.

### 2.4 BS PD 5500 UNFIRED FUSION WELDED PRESSURE VESSELS (1997)

O anexo C da norma BS PD 5500 (1997), Assessment of vessels subject to fatigue, trata de vasos submetidos à fadiga e contém os requisitos para que estes sejam projetados para uma vida

útil à fadiga, sendo, pelo menos, tão grande quanto à vida de serviço requerida. Segundo este anexo, os seguintes fatores influenciam a vida à fadiga:

- Serviços de carga cíclica: ciclos de temperatura, pressão, contração e dilatação da tubulação, vibração, além de cargas externas;
- Corrosão: trincas devido à fadiga em componentes submetidos ao processo de corrosão podem se propagar em tensões ainda mais baixas. Além disso, a razão de propagação (crescimento da trinca no tempo) também pode ser maior;
- Temperatura: não há restrições quanto ao uso das curvas de fadiga para vasos que irão operar a temperaturas abaixo de 0°C, desde que o material seja suficientemente tenaz para garantir que a fratura não se inicie a partir de uma trinca por fadiga. O anexo C da BS PD 5500 (1997) pode ser aplicado abaixo da temperatura em que ocorra fluência do material. Desta forma, as curvas de projeto são aplicáveis até a temperatura de 350°C para aços *ferríticos*, 430°C para aços inoxidáveis *austeníticos* e até 100°C para ligas de alumínio;
- Vibração: pulsos de pressão, vento ou proximidade com equipamentos rotativos podem causar vibração na tubulação ou entrar em ressonância com o vaso de pressão. Devido à grande quantidade de ciclos de variação de tensão induzida pela vibração, uma trinca pode ocorrer nas juntas soldadas, mesmo quando a variação de tensão é pequena.

Como em muitos casos a vibração não é prevista na fase do projeto, é fundamental que seja realizada, inicialmente, uma inspeção no *start-up* da planta. Se ocorrer uma vibração excessiva em determinado sistema, preferencialmente a fonte desta deverá ser isolada, suportes ou amortecedores deverão ser previstos no local da vibração. A norma BS PD 5500 (1997) recomenda que, se a vibração persistir e não tiver sido considerada como uma causa no processo de fadiga na fase do projeto, uma reavaliação utilizando o "Método Detalhado de Avaliação de Fadiga" desta norma deverá ser feita.

Na seção C2 do anexo C, são definidas as condições para que uma análise de fadiga detalhada seja realizada. A análise de fadiga detalhada não será necessária se os ciclos de tensões de todas as fontes não ultrapassem o valor dado pela equação 9 (EQ9):

$$N < \frac{6x10^9}{f_f^8} \left(\frac{22}{e}\right)^{0,75} \left(\frac{E}{2,9.10^5}\right)^3$$
(EQ9)

# Onde:

- e maior espessura encontrada ou 22 mm;
- ff tensão de projeto;
- E módulo de elasticidade do material.

### 2.4.1 Método Simplificado de Análise Utilizando Curvas de Fadiga

O anexo C da BS PD 5500 (1997) propõe um método simplificado de análise de fadiga utilizando curvas de projeto. O método é resumido a seguir, sendo recomendada a consulta da norma BS PD 5500 (1997) para maiores detalhes:

- Passo 1 Identificar a quantidade de ciclos de tensão para os vários eventos (n1, n2, n3, ...).
- Passo 2 Para cada evento, calcular a maior variação de tensão devido à pressão, variação de temperatura e cargas mecânicas.
- Passo 3 Checar se a equação (2.10) é satisfeita.

$$\sum \frac{n_i}{N_i} \le 0.6 \left(\frac{22}{e}\right)^{0.75}$$
 (EQ10)

Onde:

i = 1, 2, 3...

- e maior espessura encontrada ou 22 mm;
- Ni número de ciclos obtidos da curva de fadiga apropriada.

# 2.4.2 Método Detalhado de Avaliação de Fadiga

Um resumo do método detalhado de avaliação de fadiga é apresentado a seguir, sendo recomendada a consulta da norma BS PD 5500 (1997) para maiores detalhes. Segundo este método, a resistência à fadiga de um vaso de pressão é governada pela resistência a fadiga dos seus detalhes.

2.4.2.1 Curvas S-N para avaliação dos detalhes de solda

Curvas originadas a partir de ensaios de fadiga realizados com amostras soldadas são fornecidas na norma, e aqui reproduzidas na Figura 7.



Fig. 7 Curvas S-N de aços *ferríticos* até 350°C, aços inox *austeníticos* até 430°C e ligas de alumínio até 100°C. Fonte: (BS PD 5500, 1997).

A curva de fadiga é representada pela seguinte equação,

$$\mathcal{S}_r^m \mathcal{N} = \mathcal{A} \tag{EQ11}$$

Onde:

m e A - constantes definidas no Quadro 3.

2.4.2.2 Curvas S-N

As constantes das curvas de fadiga são aplicadas de acordo com o tipo do detalhe e a quantidade de ciclos, conforme indicado nas Tabelas 4 e 5.

| Classe          | Constantes  | s para Curvas S-N     | 6    |                       | Faixa de tensão   |
|-----------------|-------------|-----------------------|------|-----------------------|-------------------|
|                 | para N < 10 | para N < 107 ciclos   |      | para N > 107 ciclos   |                   |
|                 | m           | A                     | 209- | Λ                     | N/mm <sup>2</sup> |
| C <sup>2)</sup> | 3.5         | $4.22 \times 10^{13}$ | 5.5  | $2.55 \times 10^{17}$ | 78                |
| D               | 3           | $1.52 	imes 10^{12}$  | 5    | $4.18 	imes 10^{15}$  | 53                |
| E               | 3           | $1.04	imes10^{12}$    | 5    | $2.29 \times 10^{15}$ | 47                |
| F               | 3           | $6.33 \times 10^{11}$ | 5    | $1.02 	imes 10^{15}$  | 40                |
| F2              | 3           | $4.31 	imes 10^{11}$  | 5    | $5.25 	imes 10^{14}$  | 35                |
| G               | 3           | $2.50 	imes 10^{11}$  | 5    | $2.05 	imes 10^{14}$  | 29                |
| W               | 3           | $1.58 	imes 10^{11}$  | 5    | $9.77 	imes 10^{13}$  | 25                |

Tabela 4 Constante das curvas de fadiga de acordo com a quantidade de ciclos.

Fonte: (BS PD 5500, 1997).

| Tipo de Junta                                                                      | Detalhe      | Classe |
|------------------------------------------------------------------------------------|--------------|--------|
| Solda de penetração<br>total feita em<br>mesmo nível                               |              | D      |
| Solda de penetração<br>total feita dos dois<br>lados ou um só lado<br>com desnivel | Fundament    | D      |
| Solda de penetração<br>feita de uma lado<br>apenas sem fixação                     | - California | D      |
| Solda de penetração<br>total em mesmo nível<br>e superfície preparada              |              | D      |

Tabela 5 Classificação dos detalhes das soldas.

Fonte: (BS PD 5500, 1997).

Se existirem duas ou mais ocorrências de grupos de ciclo de tensão, o dano acumulado deverá ser verificado de tal forma que:

$$\sum \frac{n_i}{N_i} \le 1 \tag{EQ12}$$

#### 2.4.2.3 Consideração do efeito do material

Como apontado anteriormente, a norma permite a aplicação da mesma curva S-N para todos os aços (*ferríticos* e *austeníticos*) e para todas as ligas de alumínio. As curvas de fadiga da Figura 7 estão relacionadas a materiais com módulo de elasticidade de 2,09 x 10<sup>5</sup> N/mm<sup>2</sup>, típico para aços *ferríticos* em temperatura ambiente. Quando outro material ou temperatura é considerado, a variação de tensão para o caso particular pode ser obtida através da relação abaixo.

$$\frac{S_r}{s} = \frac{E}{2.9 \, s \, 10^5}$$
 (EQ13)

Onde:

- Sr variação de tensão do caso particular;
- S variação de tensão conforme curva de fadiga;
- E módulo de elasticidade.

### 2.4.2.4. Consideração do efeito da espessura de chapa

A resistência à fadiga de uma união soldada pode cair com o aumento da espessura da chapa. Assim, a curva de fadiga considera componentes com espessura de parede até 22 mm. Para chapas com espessura *e* maior que 22 mm, a variação de tensão obtida através da curva de fadiga deverá ser multiplicada pelo fator  $(22/e)^{1/4}$ .

Levando em consideração os diferentes materiais e espessuras de parede, a equação (EQ14) pode ser reescrita como:

$$N = A \left(\frac{22}{E}\right)^{m/4} \left(\frac{S_r \, 2,09 \, x \, 10^5}{E}\right)^{-m}$$
(EQ14)

onde:

N – número de ciclos;

A – constante do material, conforme Tabela 2.4;

- m constante do material, conforme Tabela 2.4;
- $S_r$  variação de tensão do caso particular;
- E módulo de elasticidade.

### 2.5. ASME B31J Stress Intensification Factors, Flexibility Factors (2017)

O código ASME B31 para tubulações requer o uso de fatores de flexibilidade *k* e fatores de intensificação de tensões *SIF* de elementos de tubulações, como curvas e "tês", para determinação das tensões devido a diversos tipos de carregamento, incluindo cargas cíclicas que podem ocasionar falhas por fadiga. A ASME B31J (2017) fornece uma atualização para o cálculo destes fatores, sendo o principal objetivo desta norma melhorar a precisão dos fatores de flexibilidade *k* e intensificadores de tensão *SIF* usados no projeto e na análise de tensões da tubulação. Os fatores de flexibilidades usados para elementos de tubulações pela maioria dos projetistas de tubulações e vasos de pressão foram determinados com base na tecnologia dos anos 50. Segundo o grupo de pesquisa PRG (*Paulin Research Group*), as diferenças entre os fatores de flexibilidade e intensificadores de tensão segundo o apêndice D da ASME B31.3 e os novos fatores da ASME B31J são consideráveis, o que pode modificar significativamente os valores das tensões calculadas.

### 2.6. DNV OS C101 Design of Offshore Steel Structures, General – LRDF Method (2016)

Esta norma tem como objetivo prover princípios, requerimentos técnicos e orientações para projetos de estruturas *offshore*. É importante destacar nesta norma, em sua seção 5, *Fatigue Limit States*, a definição dos fatores de projeto à fadiga conforme a seguir.

#### **2.6.1** Design Fatigue Factors (DFF)

São fatores que devem ser aplicados para reduzir a probabilidade de falhas por fadiga, e dependem da importância do componente com relação à integridade estrutural, disponibilidade para inspeção e reparo. Os fatores *DFF* devem ser aplicados no projeto de vida à fadiga. A norma recomenda que o fator admissível de dano acumulado de projeto seja expresso como a razão do dano acumulado para um determinado número de ciclos pelo fator de projeto à fadiga (*DFF*). A Tabela 6 traz os fatores a serem considerados de acordo com a condição e localização do elemento estrutural avaliado.

|     | Fator de Projeto à Fadiga (DFF)                                   |  |  |  |  |
|-----|-------------------------------------------------------------------|--|--|--|--|
| DFF | Elemento Estrutural                                               |  |  |  |  |
| 1   | Estrutura interna, com acesso e não soldada diretamente às partes |  |  |  |  |
|     | sudmersas.                                                        |  |  |  |  |
| 1   | Estrutura externa, com acesso para inspeção regular e reparos em  |  |  |  |  |
|     | condições secas e limpas.                                         |  |  |  |  |
| 2   | Estrutura interna, com acesso e soldada diretamente às partes     |  |  |  |  |
|     | submersas.                                                        |  |  |  |  |
| 2   | Estruturas externas não acessíveis para inspeções e reparos em    |  |  |  |  |
|     | condições secas e limpas.                                         |  |  |  |  |
| 3   | Áreas sem acesso ou impossível de ser acessada para inspeções e   |  |  |  |  |
|     | reparos durante a operação da unidade.                            |  |  |  |  |

#### Tabela 6 Fator de projeto à fadiga.

### Fonte: (DNV OS C101, 2016).

Unidades que seguem programas normais de inspeção, de acordo com os requerimentos da classe como, por exemplo, um intervalo de inspeção de 5 anos, o *DFF* deverá ser considerado igual a 1.

Os fatores de projeto à fadiga são baseados em considerações especiais nas quais uma falha por fadiga pode provocar consequências significativas, tais como: risco de perda de vidas humanas, significante poluição ambiental e maior economia para o projeto. Estes fatores podem ser utilizados conforme, por exemplo, a seção 2.11 da norma DNV RP C203 (2010) *Guidance to when a detailed fatigue analysis can be omitted*, onde no caso de *DFF* maior que 1, o fator redutor *DFF* <sup>-0,33</sup> deve ser aplicado à tensão limite de fadiga do material.

2.7 IGE / TD / 12 Pipework Stress Analysis for Gas Industry Plant. Recommendations on Transmission and Distribution Practice (2013)

Segundo esta norma, a maior variação de tensão sofrida por um tubo e seus componentes devido às variações de pressão, temperatura e outras cargas, deve ser avaliada para evitar falha local da estrutura devido a uma trinca. O apêndice V desta norma contempla a análise de fadiga.

Variações na pressão, temperatura e cargas externas aplicadas causam variações de tensões na parede dos tubos, podendo uma trinca devido à fadiga crescer nestas condições. Por esta razão, é necessário garantir que todo o sistema de tubulação possua vida à fadiga adequada.

A aplicação das classes de fadiga nos componentes é dada na Tabela 7. Para outros componentes que não estão listados na Tabela 7, ou juntas com penetração parcial, deverá ser assumida a classe de fadiga G, a menos que este componente esteja referenciado nas normas BS PD 5500 (1997) ou BS 7608 (2014) com outra classe de fadiga, menos conservadora. A curva de fadiga de projeto é apresentada na Figura 8 e Tabela 8.

| COMPON              | CLASSE DE<br>FADIGA |          |  |
|---------------------|---------------------|----------|--|
| Tracha da tuba rata | Esmerilhada         | Classe D |  |
| Trecho de tubo reto | Não esmerilhada     | Classe E |  |
| Transições de       | Esmerilhada         | Classe D |  |
| espessuras          | Não esmerilhada     | Classe E |  |
| Reduções concêntric | as e excêntricas    | Classe E |  |
| Currues soldedes    | Com costura         | Classe E |  |
| Curvas soldadas     | Sem costura         | Classe D |  |
| Curva goi           | Curva gomada        |          |  |
| Colar de            | topo                | Classe F |  |
| Flange de p         | escoço              | Classe F |  |
| Nipoflar            | nge                 | Classe F |  |
| Tê fabric           | cado                | Classe F |  |
| Tê fabricado confo  | Classe F            |          |  |
| Tê forja            | Classe F            |          |  |
| Sweepo              | Classe F            |          |  |
| Tê com reforç       | Classe F            |          |  |
| Sela ou reforç      | Classe F            |          |  |

#### Tabela 7 Classes de fadiga dos componentes.

Fonte: (IGE / TD / 12, 2013).



Fig. 8 Curva de fadiga para materiais com módulo de elasticidade igual a 209.000 N/mm2 Fonte: IGE / TD / 12, 2013.

| Classe |          | Faixa de tensão para<br>N = 10 <sup>7</sup> ciclos                   |     |                       |                      |
|--------|----------|----------------------------------------------------------------------|-----|-----------------------|----------------------|
|        | para N ≤ | para N $\leq$ 10 <sup>7</sup> ciclos para N > 10 <sup>7</sup> ciclos |     |                       | $(N/mm^2)$           |
|        | m        | A                                                                    | m   | A                     |                      |
| D      | 3.0      | 1.52x10 <sup>12</sup>                                                | 5.0 | 4.18x10 <sup>15</sup> | 53 N/mm <sup>2</sup> |
| E      | 3.0      | 1.04x10 <sup>12</sup>                                                | 5.0 | 2.29x10 <sup>15</sup> | 47 N/mm <sup>2</sup> |
| F      | 3.0      | 6.33x10 <sup>11</sup>                                                | 5.0 | 1.02x10 <sup>15</sup> | 40 N/mm <sup>2</sup> |
| G      | 3.0      | 2.50x10 <sup>11</sup>                                                | 5.0 | 2.05x10 <sup>14</sup> | 29 N/mm <sup>2</sup> |
| W      | 3.0      | 1.58x10 <sup>11</sup>                                                | 5.0 | 9.77x10 <sup>13</sup> | 25 N/mm <sup>2</sup> |

Tabela 8 Constantes das curvas de fadiga.

Fonte: Adaptado de IGE / TD / 12 (2013).

A curva de fadiga é dada pela seguinte equação:

$$N = \frac{A}{S_R^m}$$
(EQ15)

onde:

N – número de ciclos;

 $S_R$  – variação de tensão do caso particular;

A – constante do material, conforme Tabela 8;

m – constante do material, conforme Tabela 8.

### 2.8 UKOOA FPSO Design Guidance Notes for UKCS Service (2002)

Neste guia desenvolvido pela *UKOOA*, verificou-se em sua seção 2.10.3 *Static vs. dynamic deformations*, que existem considerações sobre relações entre as deformações estáticas e dinâmicas do FPSO. São consideradas deformações estáticas aquelas que ocorrem no FPSO quando em águas calmas (ausência de ondas). As deformações dinâmicas são as decorrentes da ação das ondas sobre a embarcação. Neste documento, considera-se que 40% da deformação total do FPSO é estática, consequentemente, as deformações dinâmicas devido a ação das ondas correspondem a 60% da deformação total do FPSO. Esta informação corrobora com a recomendação da aplicação do fator de 0,6 sobre a deformação total do FPSO informada pela equipe de estruturas, verificado na seção 5.1.8 *Fatigue evaluation in inter module analysis* da especificação técnica. Esta premissa de deformações dinâmicas é aplicada aos casos de carregamentos do estudo de flexibilidade.

#### 2.9 ABS Spectral-Based Fatigue Analysis for FPSO Installations (2018)

Este guia fornece informações sobre métodos para execução de análise espectral de fadiga de instalações *offshore* do tipo FPSO. A análise espectral da fadiga baseia-se na linearidade presumida das cargas induzidas pelas ondas em relação às próprias ondas. Esta aproximação é aplicável a sistemas flutuantes de produção, armazenamento e descarregamento (FPSOs) e sistemas flutuantes de armazenamento e descarregamento (FSOs). A aplicação do método de análise espectral de fadiga a um casco é apresentada neste guia.

São empregados conceitos e terminologias básicas que foram definidos no ABS *Guide for the Fatigue Assessment of Offshore Structures* (2003). Nessa referência, afirma-se que: "A avaliação da fadiga denota um processo em que a solicitação de fadiga em um elemento estrutural (por exemplo, um detalhe da conexão) é estabelecida e comparada com a resistência à fadiga prevista desse elemento. Uma maneira de categorizar uma técnica de avaliação da fadiga é dizer que ela se baseia em um cálculo direto do dano à fadiga, ou da expectativa de vida à fadiga. Três metodologias importantes de avaliação são os métodos simplificado, espectral e determinístico. Alternativamente, uma avaliação indireta da fadiga prevista (definida probabilisticamente), igual ou inferior a uma faixa de tensão permitida. Também existem técnicas de avaliação baseadas em métodos de análise no domínio do tempo, que são especialmente úteis para sistemas estruturais sujeitos a resposta estrutural não-linear ou carga não-linear."

A técnica de avaliação da fadiga apresentada é um método de cálculo direto baseado na análise espectral, que pode produzir um resultado da avaliação da fadiga em termos de danos ou vida útil esperados. A resistência à fadiga dos detalhes estruturais é estabelecida usando a abordagem da curva *S-N* especificada no guia referenciado. Deve-se ter em mente que, para a estrutura do casco de uma instalação *offshore*, o carregamento induzido por ondas é geralmente a fonte dominante de dano por fadiga.

Segundo este guia da ABS, alguns tipos de estruturas flutuantes *offshore* também podem ser submetidos a cargas de fadiga significativas de outros tipos de carregamento. Este é o caso de cascos que sofrem carga e descarga frequentes de fluidos produzidos. Por exemplo, nos sistemas FPSO e FSO, essas alterações de carga podem induzir grandes faixas de tensão na viga do casco e tensão secundária (embora em ciclos mais baixos do que as cargas de onda direta).

A fadiga induzida pelos ciclos de armazenamento e descarregamento também é abordada neste guia.

Os principais componentes do método de análise de fadiga espectral deste guia da ABS são categorizados nos seguintes componentes:

- estabelecer as solicitações por fadiga;
- determinar resistência ou capacidade à fadiga;
- calcular danos por fadiga ou vida útil esperada.

Quando as ondas oceânicas são a principal fonte de solicitação de fadiga, a tarefa fundamental de uma análise espectral de fadiga é a determinação da função de transferência de tensão,  $H_{\sigma}$  ( $\omega \mid \theta$ ), que expressa a relação entre a tensão em um local estrutural específico e a unidade de amplitude de onda na frequência da onda ( $\omega$ ) e direção da onda ( $\theta$ ) em relação ao navio. A função de transferência de tensão,  $H_{\sigma}$  ( $\omega \mid \theta$ ), para um local onde a resistência à fadiga deve ser avaliada, deve ser determinada pelo método dos elementos finitos (MEF) de análise estrutural usando um modelo tridimensional (3-D) que representa toda a estrutura do casco, a estrutura de suporte do equipamento na parte superior e a interface com o sistema de amarração e, se aplicável, com os *risers*. Os casos de carga a serem utilizados na análise estrutural devem ser os obtidos de acordo com a seção 6 do guia.

Segundo o guia, é preferível que uma análise estrutural seja realizada em cada frequência, ângulo de incidência, nas condições básicas de carregamento e velocidade do navio, se aplicável, empregada na análise espectral e que as tensões resultantes sejam usadas para gerar diretamente a função de transferência de tensão. Normalmente, a faixa de frequência a ser usada é de 0,2 a 1,80 rad/s, em incrementos não maiores que 0,1 rad/s. No entanto, dependendo das características da resposta, pode ser necessário considerar uma faixa de frequência diferente. O intervalo da direção da onda é de 0 a 360 graus, em incrementos não superiores a 30 graus.

As condições básicas de carregamento estão relacionadas às variações prováveis no carregamento que a estrutura do casco do FPSO experimentará durante sua vida útil no local e para o(s) caso(s) de trânsito. Os principais parâmetros que definem uma condição básica de carregamento são os arranjos de carga / lastro do tanque e variações significativas nas cargas do equipamento na parte superior. Esses parâmetros influenciam diretamente não apenas os componentes de tensão estáticos da resposta do casco, mas também afetam as tensões cíclicas induzidas por ondas. Existem duas maneiras diretas deste efeito. Primeiramente esse efeito é sentido nas magnitudes e distribuições de massas e forças restauradoras na determinação de

acelerações globais e locais e deslocamentos de corpo rígidos, que por sua vez afetam os efeitos da carga induzida por ondas, empregados na análise estrutural. Em segundo lugar, a variação do calado afeta as áreas do casco que serão submetidas a pressões externas diretas e a magnitude e distribuição dessas pressões.

Devido à variação nas condições básicas de carregamento e seus efeitos nas previsões de danos por fadiga, é necessário considerar mais de um caso básico na análise de fadiga. No mínimo, para a análise das condições pós-instalação no local, dois casos devem ser modelados e usados no processo de análise de fadiga baseada em espectro. Os dois casos exigidos são aqueles resultantes e representando, provavelmente, os níveis mais profundos e rasos, respectivamente, que se espera que a instalação experimente durante sua vida útil no local.

Os danos por fadiga decorrente de casos previstos de trânsito do FPSO (geralmente apenas a viagem do FPSO ao local da instalação) devem ser determinados. Na avaliação do dano por fadiga acumulado durante os casos de trânsito, os efeitos da velocidade do navio devem ser incluídos na avaliação dos RAOs (*Response Amplitude Operators*) de tensão e do número de ciclos de tensão. Sugere-se que as solicitações de fadiga produzidas pelos casos de trânsito sejam calculadas separadamente.

Uma estrutura experimentará vários tipos de cargas durante sua vida útil. Descrever adequadamente essas fontes é o primeiro passo crucial na avaliação da fadiga da estrutura. Obviamente, é impossível prever ou descrever com certeza as condições ambientais que a estrutura experimentará durante sua vida útil. No entanto, é possível definir uma série de condições meteorológicas e estabelecer estatisticamente a probabilidade de cada condição ocorrer na estrutura durante sua vida. Uma análise de fadiga pode então ser realizada com base nesse tipo de descrição estatística das condições ambientais.

Durante a vida útil de um FPSO, o mesmo experimentará um grande número de ondas, desde as muito pequenas a possíveis ondas gigantes. Uma maneira prática de descrever essas ondas em constante mudança é dividi-las em várias categorias (estados do mar) e usar estatísticas de ondas de curto prazo para representar cada estado do mar e estatísticas de ondas de longo prazo, geralmente na forma de um diagrama de dispersão de ondas e roseta, para delinear a taxa na qual um estado de mar ocorre.

De maneira semelhante, existem dois níveis na descrição da direcionalidade da onda, ou seja, espectro direcional da onda ou propagação da onda por curto prazo e roseta da onda por longo prazo.

Em resumo, a análise de fadiga espectral começa após a determinação da função de transferência de tensão. Os dados das ondas são então incorporados para produzir espectros de

resposta de tensão, que são usados para derivar a magnitude e frequência de ocorrência de faixas de tensão nos locais onde o dano por fadiga deve ser calculado. Os dados das ondas são representados em termos de um diagrama de dispersão das ondas e um espectro de energia das ondas. O diagrama de dispersão de ondas consiste em estados do mar, que são descrições de curto prazo do mar em termos de probabilidade conjunta de ocorrência de uma altura significativa da onda, *Hs*, e um período característico. Um método apropriado deve ser empregado para estabelecer os danos por fadiga resultantes de cada estado do mar considerado. Os danos resultantes de cada estado do mar são chamados de curto prazo. A fadiga total resultante da combinação do dano de cada uma das condições de curto prazo pode ser obtida através da regra de Miner. O apêndice 3 deste guia da ABS contém uma descrição detalhada das etapas envolvidas em um método sugerido de análise de fadiga espectral, que segue as etapas básicas mencionadas acima.

Observou-se neste guia, que os ciclos de armazenamento e descarregamento são considerados como fadiga de baixo ciclo. As Figuras 9 e 10, reproduzidas do guia da ABS, ilustram a combinação das tensões induzidas pelas ondas e pelos ciclos de armazenamento e descarregamento. Este guia apresenta procedimentos para cálculo do dano por fadiga de baixo e alto ciclo.



Fig. 9 Tensões induzidas pelas ondas e pelos ciclos de armazenamento e descarregamento (ABS, 2018).



Fig. 10 Superposição das tensões induzidas pelas ondas em um ciclo de armazenamento e descarregamento (ABS, 2018).

# 2.10 IIW Recommendations for Fatigue Design of Welded Joints and Components (2008)

O Instituto Internacional de Soldagem (IIW) apresenta as classes de fadiga (*FAT*), que representam a tensão  $\Delta\sigma$  (MPa) em 2x10<sup>6</sup> ciclos para as juntas soldadas (vide Tabela 9), considerando vários efeitos como, por exemplo, concentradores de tensão, direção de carregamento, imperfeições na solda, entre outros. Além disso, são especificadas as curvas para cada processo de soldagem.

| No. | Structural Detail                | Description<br>(St.= steel; AL= aluminium)                                                                                                   | FAT<br>St. | FAT<br>Al. | Requirements and Remarks |  |  |  |
|-----|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--------------------------|--|--|--|
| 300 | Longitudinal load-carrying welds |                                                                                                                                              |            |            |                          |  |  |  |
| 311 |                                  | Automatic longitudinal seam welds<br>without stop/start positions in hollow<br>sections<br>with stop/start positions                         | 125<br>90  | 50<br>36   |                          |  |  |  |
| 312 | · · ·                            | Longitudinal butt weld, both sides<br>ground flush parallel to load direction,<br>proved free from significant defects by<br>appropriate NDT | 125        | 50         |                          |  |  |  |
| 313 | - FILITITITIE                    | Longitudinal butt weld, without<br>stop/start positions, NDT<br>with stop/start positions                                                    | 100<br>90  | 40<br>36   |                          |  |  |  |

#### Tabela 9 Classes de fadiga (FAT) para algumas configurações de junta.

Fonte: (IIW, 2008)

### 2.11 Considerações sobre as Normas Europeias e Americanas

Sokolov (2013) faz uma análise comparativa entre as normas americana e europeia no que diz respeito aos procedimentos de projeto à fadiga. Uma diferença importante entre os códigos europeus e americanos reside no fato de que os códigos europeus, como BS 7608, BS 7910, PD 5500, EM 13445-3, utilizam dados de resistência à fadiga obtidos em ensaios com juntas soldadas. Já os códigos americanos, como ASME B31.3, ASME III, ASME VIII, API-579, utilizam dados de ensaios em barras sem soldas. Estes dados vêm sendo corrigidos ao longo dos anos para a consideração da resistência à fadiga de detalhes soldados.

Assim, o artigo questiona o fato de qual destas duas escolas de avaliação de fadiga atende de maneira mais adequada ao estudo de fadiga. Começando com um levantamento histórico dos códigos, a ASME B31.3 foi a norma pioneira no que se refere a projeto à fadiga em componentes pressurizados no ano de 1955, utilizando a metodologia de Markl e George (1949). Ao longo do meio século seguinte, as pesquisas revelaram algumas limitações e discrepâncias do método adotado por esta norma. As curvas de fadiga foram obtidas por Markl para todos os tipos de tubulação e, posteriormente, normalizado para a curva de fadiga de referência, de acordo com o detalhe da solda, utilizando os fatores de concentração de tensão (i). Estes fatores são multiplicadores da tensão admissível que foram adotados para incorporar o efeito da redução da resistência à fadiga nos tipos de juntas que variam de acordo com suas geometrias e qualidade. Um fator de segurança de 2,0 foi aplicado na curva média de fadiga para deslocá-la para um patamar mais baixo de tensão admissível, conforme a equação (EQ16),

$$i S_d = 245000 N_f^{-0,2}$$
 (EQ16)

onde:

*i* – fator de concentração de tensões;

 $S_d$  – tensão admissível em lbf/pol<sup>2</sup>;

N<sub>f</sub> – número de ciclos até a falha.

Entretanto, a equação 16 não foi incluída na norma ASME B31.3, que a generalizou para representar as condições estáticas equivalentes, condições de alto número de ciclos e condições de baixo número de ciclos de fadiga, simultaneamente. Assim, a equação de projeto estabelecida foi apresentada anteriormente nesta dissertação, sendo o fator de redução de tensão *f*, o único relacionado ao projeto à fadiga.

Em 2008, o PRG (*Paulin Research Group* – grupo americano de pesquisa na área de análise de tensões em tubulações) buscou validar experimentalmente os dados e ensaios de Markl. Conforme mostra a Figura 11, chegou-se à conclusão de que a inclinação da curva de Markl estava em desacordo, não só com os dados dos ensaios obtidos pelo PGR, mas também em desacordo com os códigos europeus. A incorreta inclinação da curva tem como consequência resultados não conservativos para regimes de alto número de ciclos.



Fig. 11 Curvas obtidas dos resultados dos ensaios do grupo PRG. Fonte: (GRUPO PRG, 2008).

Assim, o PRG propôs a equação (EQ17) ao invés da equação (EQ2) desta dissertação, reproduzida da norma ASME B31.3, para determinação do fator de redução de tensão baseada em seus resultados:

$$f = 20.6 \,(\mathrm{N})^{-0.335} \tag{EQ17}$$

Essa proposta tinha o objetivo de alcançar um fator de segurança consistente de 1,84 para todos os números de ciclos, entretanto, não foi aplicada pela ASME.

A norma ASME VIII incorporou o estudo de fadiga no ano de 1968, adaptado da norma ASME III (destinada a componentes nucleares), que já incorporava métodos de análise de fadiga com um fator de redução de tensão de 4,0 a 3,0, abrangendo fadiga de baixo ciclo, às quais estes componentes eram, principalmente, submetidos.

A base de ensaios de fadiga da ASME III foi originada por Langer (1962) através de ensaios de fadiga em barras de aço polidas submetidas a 10<sup>6</sup> ciclos, onde o limite de fadiga absoluto era determinado. Além disso, um fator de 2,0 na tensão ou de 20 no número de ciclos foi aplicado para aproximar o limite inferior da curva de resistência à fadiga. Após ter sido incorporado à ASME VIII, este método vem sendo modificado desde 1968.

Em 1998, o WRC (*Weld Research Council*) implementou uma correlação entre o teste não-destrutivo das juntas soldadas com suas expectativas de vida à fadiga. Passou a ser assim considerado o fator de redução de resistência à fadiga (*FSRF – Fatigue Strength Reduction Factor*) aplicado às curvas de fadiga obtidas por Langer, de maneira a ser considerado o efeito da redução da resistência à fadiga nas juntas soldadas. A *Argonne National Laboratory* (ANL) validou os dados dos ensaios de Langer em 2003 e concluiu que, em alguns casos, os dados se mostravam não-conservativos, mesmo em condições ambientes, da mesma forma como foi observado em outras pesquisas realizadas. Assim, a ANL propôs algumas modificações relacionadas à área nuclear, concluindo que o fator de segurança de 2,0 para tensão e 20 para número de ciclos ainda eram razoáveis, uma vez que não traziam um excessivo grau de conservadorismo, como se acreditava anteriormente.

A União Europeia publicou o novo código EN 13445 de vaso de pressão em 2002. Uma comissão europeia determinou que fosse realizado um estudo comparativo entre esta e a ASME VIII edição 2004, que levasse em consideração o risco e os custos envolvidos. Foi verificado que, em determinados casos, a análise de fadiga de acordo com a ASME VIII previa uma maior estimativa de vida à fadiga se comparada à EN 13445. Uma resposta oficial da ASME concluiu que o estudo da comissão europeia omitiu o fator de redução de resistência à fadiga (*FSRF*).

Estes fatores foram publicados na edição de 2007 da ASME VIII, com mais algumas modificações de metodologia, tais como:

- análise de fadiga com a utilização de elementos finitos em sobreposição à análise, conforme estabelecido pelo código;
- determinação da tensão equivalente através do critério de Von Mises, adaptado para a análise de fadiga;
- o método Master S-N foi adicionalmente oferecido como uma alternativa aos dados obtidos por Langer em seus ensaios;
- as curvas de Langer passaram a contemplar diversos materiais como o aço carbono (baixas liga, altas liga, alta resistência), aços martensíticos e austeníticos extrapolados para 10<sup>11</sup> ciclos;
- o novo método *Master S-N* utiliza o desenvolvimento original do Dr. P. Dong do *Batelle Institute* (ou método Batelle), com algumas modificações realizadas pela ASME;
- o grupo PRG completou o estudo sobre o efeito das modificações realizadas pela ASME (correção de espessura, tensão principal e plasticidade);
- as curvas de fadiga do método *Master S-N* contempladas na edição 2007 da ASME VIII consideram três níveis de falha, são do tipo logarítimico e não possuem um limite de fadiga. As principais conclusões do artigo podem ser resumidas como a seguir.
- Os códigos europeus de análise de fadiga estão historicamente em uma condição mais favorável do que os códigos ASME.
- Os códigos ASME III e ASME VIII foram baseados em ensaios mais antigos (entre os anos 1950 e 1960), onde diferenças de detalhes de juntas soldadas não eram contempladas.
- Foram acrescentadas várias modificações ao método original de análise de fadiga proposto pela ASME, uma vez que estes se encontravam distorcidos.
- Enquanto os métodos da ASME não forem totalmente confirmados pela indústria, sua aplicação na avaliação da fadiga será mantida em dúvida.

# 2.12 Estudo Comparativo entre Procedimentos de Projeto à Fadiga de Tubulações em FPSO

Conforme já mencionado, a grande demanda por plataformas do tipo FPSO, principalmente nos anos de 2011 a 2015, fez com que várias empresas projetistas desenvolvessem seus projetos de tubulações paralelamente e de forma independente. A inexistência de um procedimento padrão para cálculo de fadiga de tubulações em instalações

*offshore* fez com que diferentes metodologias fossem utilizadas pelos projetistas, que empregam muitas vezes o código ASME B31.3, ou critérios baseados em recomendações da DNV RP 203 aplicadas às disciplinas naval e de estruturas.

Nesta seção, serão analisados diferentes procedimentos de cálculo de fadiga adotados em projetos de tubulações para FPSOs. Importante observar que as divergências de metodologias de análise de fadiga de cada projeto já se tornam claras na comparação entre as especificações técnicas de cada projeto. Foram considerados como base de estudo, quatro sistemas de tubulações de processo de diferentes plataformas, que se estendem ao longo do FPSO, sendo desta forma bastante influenciados pelas acelerações e deslocamentos estruturais do navio.

Há uma unanimidade entre os critérios na orientação de que as tensões cíclicas causadas pelas acelerações devido ao movimento do navio e o deslocamento estrutural devem ser considerados no projeto à fadiga. Entretanto, divergem no método de avaliação e na definição do dano máximo admissível. Determinados critérios consideram que deverá ser utilizado o método mais conservativo entre o método simplificado da DNV RP C203 e o método global de cálculo de fadiga da ASME BPV Sec. VIII Div. 2 (apêndices 4 e 5). Alguns especificam o tempo de vida útil de 25 anos para as instalações, enquanto que outros informam que a vida útil deverá ser conforme o projeto. Outro aspecto importante é com relação à especificação da curva de fadiga a ser utilizada. Determinados critérios entram no mérito de qual curva deverá ser utilizada, levando em consideração o tipo de fabricação da tubulação, bem como a maneira como a qual será inspecionada e também se possui ou não acessórios soldados.

Nenhum dos procedimentos analisados considerou os efeitos do armazenamento e descarregamento do FPSO, embora os deslocamentos produzidos por estas operações sejam considerados pelo código DNV RP D101 como possíveis causas de danos por fadiga em FPSOs. Foram observadas divergências também com relação à frequência natural mínima recomendada para tubulações com possibilidade de apresentar vibrações excessivas, como tubulações que operam com escoamentos multifásicos. Os procedimentos de projeto também diferem em outros aspectos, como listado a seguir.

- Emprego de relações entre os deslocamentos de sag e hog para redução dos casos de carregamento na análise computacional.
- Aplicação de fatores aos deslocamentos estruturais do FPSO para adequação dos níveis de deslocamentos em relação às diferentes alturas de onda.
- Agrupamento das faixas de altura de onda para redução dos casos de carregamento na análise computacional.

- Alguns projetos consideram a condição operacional (DOC Design Operating Condition) e outros a condição extrema de projeto (DEC – Design Extreme Condition).
- > Consideração de diferentes números de ciclos de ondas para cálculo de dano por fadiga.
- Emprego de diferentes casos de carregamento.

A Tabela 10 apresenta um resumo das principais diferenças encontradas entre os quatro projetos analisados.

| ITEM                          |                         | <b>PROJETO 1</b>                                                                                                                                                                                                                                                                 | PROJETO 2                                                                                                                                                                                                                                                                                                                                                       | PROJETO 3                                                                                                                                                                                                                                                                                                                                                                      | PROJETO 4                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 - DANO ADMISSÍVEL           |                         | 1,0                                                                                                                                                                                                                                                                              | 1,0                                                                                                                                                                                                                                                                                                                                                             | 0,6 para tubos até<br>22 mm (espessura).<br>$\sum \frac{n_i}{N_i} \le 0.6 (\frac{22}{e})^{0.75}$                                                                                                                                                                                                                                                                               | 0,6 para tubos até<br>22 mm (espessura).<br>$\sum \frac{n_i}{N_i} \le 0.6 (\frac{22}{e})^{0.75}$                                                                                                                                                                                                                                                                               |
| 2 - CURVA DE FADIGA           |                         | -                                                                                                                                                                                                                                                                                | <ul> <li>F3 para todos<br/>os materiais e<br/>temperaturas;</li> <li>E da PD5500<br/>para 100%<br/>radiografados;</li> <li>D da PD<br/>5500 para tubo<br/>sem acessório<br/>soldado.</li> </ul>                                                                                                                                                                 | - F3<br>- B1 $\rightarrow$ sem cost.<br>- B2 $\rightarrow$ com cost.<br>(DNV RP C203)                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                              |
| 3 - VIDA ÚTIL                 |                         | -                                                                                                                                                                                                                                                                                | Conforme o<br>projeto                                                                                                                                                                                                                                                                                                                                           | 25 anos                                                                                                                                                                                                                                                                                                                                                                        | Conforme o projeto                                                                                                                                                                                                                                                                                                                                                             |
| 4 -<br>ESCOAMENTO<br>BIFÁSICO | MÉTODO<br>DE<br>ANÁLISE | Nas linhas<br>identificadas<br>pela equipe de<br>PROCESSO,<br>as forças<br>devido ao<br>escoamento<br>bifásico<br>devem ser<br>consideradas<br>nos pontos de<br>mudanças de<br>direção para<br>avaliação da<br>tensão e<br>consideração<br>dos<br>carregamentos<br>nos suportes. | Nas linhas<br>identificadas<br>pela equipe de<br>PROCESSO,<br>as forças<br>devido ao<br>escoamento<br>bifásico<br>devem ser<br>consideradas<br>nos pontos de<br>mudanças de<br>direção, sendo<br>realizada<br>análise<br>estática ou<br>dinâmica, de<br>acordo com a<br>necessidade.<br>Para a análise<br>estática,<br>considerar<br>DLF igual a 2<br>(Fator de | Nas linhas<br>identificadas pela<br>equipe de<br>PROCESSO, as<br>forças devido ao<br>escoamento<br>bifásico devem ser<br>consideradas nos<br>pontos de<br>mudanças de<br>direção, sendo<br>realizada análise<br>estática ou<br>dinâmica, de<br>acordo com a<br>necessidade. Para a<br>análise estática,<br>considerar DLF<br>igual a 2 (Fator de<br>Carregamento<br>Dinâmico). | Nas linhas<br>identificadas pela<br>equipe de<br>PROCESSO, as<br>forças devido ao<br>escoamento<br>bifásico devem ser<br>consideradas nos<br>pontos de<br>mudanças de<br>direção, sendo<br>realizada análise<br>estática ou<br>dinâmica, de<br>acordo com a<br>necessidade. Para a<br>análise estática,<br>considerar DLF<br>igual a 2 (Fator de<br>Carregamento<br>Dinâmico). |

# Tabela 10 Comparação entre critérios de projeto para tubulações em FPSOs.

| ITEN                      | 1                  | <b>PROJETO 1</b>                     | <b>PROJETO 2</b>                                        | PROJETO 3    | PROJETO 4                                            |
|---------------------------|--------------------|--------------------------------------|---------------------------------------------------------|--------------|------------------------------------------------------|
|                           |                    |                                      | Carregamento<br>Dinâmico).                              |              |                                                      |
|                           | FREQ.<br>NATURAL   | $\geq$ 3 Hz                          | ≥2 Hz                                                   | $\geq$ 5 Hz  | $\geq$ 5 Hz                                          |
| 5 - MÉTODO DE             | CÁLCULO            | DNV; Curva<br>S-N; Palmgren<br>Miner | DNV RP C<br>203 ou ASME<br>VIII, o mais<br>conservador. | DNV RP C 203 | DNV RP C 203 ou<br>ASME VIII, o mais<br>conservador. |
| 6 - DEFINIÇ<br>QUANTIDADE | ÃO DA<br>DE CICLOS | Sim                                  | Sim                                                     | Sim          | Sim                                                  |

# **CAPÍTULO III**

# 3.1 FONTES DE DANOS POR FADIGA EM TUBULAÇÕES OFFSHORE

Tubulações instaladas em FPSOs podem estar sujeitas a um grande número de fatores causadores de fadiga. Além das tensões devido às variações de temperatura e pressão, a ação das ondas sobre a plataforma impõe deslocamentos e acelerações nas tubulações, que devem ser considerados no projeto à fadiga. Vibrações induzidas pelo escoamento multifásico também são comuns em tubulações de processo. Além disto, as operações de armazenamento e descarregamento (*loading and offloading*) de óleo produzido pela plataforma também geram ciclos de deformação da estrutura do FPSO, que podem resultar em deslocamentos impostos às tubulações.

Neste trabalho, foram consideradas as seguintes fontes de fadiga:

- tensões de origem térmica devido às variações de temperatura dos ciclos operacionais;
- deslocamentos impostos às tubulações devido aos movimentos de tosamento e alquebramento (*sag and hog*) do FPSO;
- acelerações das tubulações devido aos movimentos de rotação jogo, arfagem, guinada (*roll, pitch, yaw*) e de deslocamento avanço, deriva, afundamento (*surge, sway, heave*) nos três eixos do navio;
- deslocamentos impostos às tubulações devido aos ciclos de armazenamento e descarregamento do FPSO;

## 3.1.1 Tensões térmicas devido aos ciclos operacionais

Quando um tubo é submetido a uma variação de temperatura, ele sofre uma variação de comprimento. Se o tubo estiver livre, essa variação também será livre e não se desenvolverão tensões internas nem reações. Entretanto, se o tubo estiver fixado de alguma forma, aparecerão tensões internas no tubo e reações nos pontos de fixação, em consciência da restrição imposta à livre dilatação ou contração do tubo. (TELES, 2004).

Estas tensões geradas são as chamadas tensões secundárias, que também podem ser originadas devido aos movimentos provocados por agentes externos aos sistemas de tubulações, tais como um bocal de um equipamento, ou mesmo devido ao deslocamento estrutural que serão impostos às tubulações devido à ação das ondas.

Em uma unidade FPSO, os equipamentos de processo possuem ciclos de operação, estando ora em funcionamento, ora fora de funcionamento. Isto se reflete para a tubulação que

ora estará operando com a temperatura do fluido, ora estará parada em temperatura ambiente. Assim, as tensões que surgem nas tubulações devido às restrições dos movimentos, conforme descrito no parágrafo anterior, são cíclicas ao longo de toda a vida útil da planta de processo, sendo esta uma fonte de fadiga de baixo ciclo de repetição (LCF – *Low Cycle Fatigue*).

Conforme já apresentado no Capítulo II, a norma ASME B31.3 apresenta o cálculo da tensão admissível devido às tensões secundárias no parágrafo 302.3.5, conforme a Equação 3.1.

$$S_A = f (1,25 S_c + 0,25 S_h)$$
 (EQ18)

onde:

 $S_A$  – tensão admissível;

f - fator de redução de tensão em função do número de ciclos;

 $S_c$  – tensão admissível na temperatura ambiente;

 $S_h$  – tensão admissível na temperatura de projeto.

O fator de redução de tensão é dado pela curva da Figura 3 mostrada no Capítulo II, e pode ser calculado pela Equação 19.

$$f = 6,0 \ (N)^{-0,2} \tag{EQ19}$$

onde:

N - número de ciclos esperados em toda a vida útil da tubulação.

Para a avaliação da fadiga devido aos ciclos de temperatura, ocorridos durante a operação de um sistema de tubulações, deve ser considerado, de forma conservadora, a ocorrência de um ciclo de operação por dia, totalizando 7000 ciclos operacionais para uma vida útil da unidade de 20 anos.

O *software* de análise de flexibilidade determina as tensões secundárias atuantes em um sistema de tubulações através do caso de carregamento denominado "expansão", indicado pela abreviatura EXP. Estas tensões são obtidas a partir da subtração algébrica entre o caso de "operação" (OPE); que se refere ao somatório de todas as contribuições do sistema em operação, sendo elas: peso da tubulação somado ao peso do fluido (W), temperatura (T1 ou T2), pressão interna (P1) e deslocamentos de agentes externos (D1 ou D2); do caso de "sustentação" (SUS), que leva em consideração o peso próprio da tubulação e do fluido (W) adicionado à pressão interna (P1). O resultado dessa combinação corresponde às tensões

secundárias geradas pelo efeito da temperatura (T1 ou T2) e dos deslocamentos de agentes externos (D1 ou D2) do sistema de tubulações.

Assim, no que se refere à avaliação da fadiga, deve ser considerada a tensão resultante no caso EXP. Os casos de carregamento para consideração da fadiga térmica devem ser distribuídos conforme Tabela 11.

|    | CASO DE CARREGAMENTO | DESCRIÇÃO                                | TIPO DE<br>TENSÃO | Nº CICLOS |
|----|----------------------|------------------------------------------|-------------------|-----------|
| L1 | W+T1+P1+D1           | OPERAÇÃO – CONDIÇÃO<br>DE PROJETO MÁXIMA | OPE               | -         |
| L2 | W+T2+P1+D2           | OPERAÇÃO – CONDIÇÃO<br>DE PROJETO MÍNIMA | OPE               | -         |
| L3 | W+P1                 | PESO PRÓPRIO + PRESSÃO                   | SUS               | -         |
| L4 | L1-L3                | EXPANSÃO – CONDIÇÃO<br>DE PROJETO MÁXIMA | EXP               | -         |
| L5 | L2-L3                | EXPANSÃO – CONDIÇÃO<br>DE PROJETO MÍNIMA | EXP               | -         |
| L6 | L4, L5               | Máximo EXP                               | MÁX.              | _         |
| L7 | L6                   | FADIGA                                   | FAT               | 7000      |

Tabela 11 Casos de carregamentos – Fadiga Térmica.

Onde:

- W Peso da tubulação + fluido;
- T1 Temperatura de Projeto Máxima;
- T2 Temperatura de Projeto Mínima;
- P1 Pressão de Projeto;

D1 – Deslocamentos impostos na tubulação para condição de Projeto Máxima (provenientes de um equipamento, por exemplo);

D2 – Deslocamentos impostos na tubulação para condição de Projeto Mínima (provenientes de um equipamento, por exemplo);

Conforme observado na Tabela 11, a fadiga térmica deve ser verificada para o caso de maiores níveis de tensões, seja na condição de projeto máxima ou na condição de projeto mínima.

# 3.1.2 Tensões devido às acelerações

Os movimentos de rotação, jogo, arfagem, guinada (*roll, pitch, yaw*) e de deslocamento, avanço, deriva, afundamento (*surge, sway, heave*) nos três eixos do navio geram acelerações que devem ser avaliadas quanto ao processo de fadiga das tubulações *offshore*.

Estas acelerações diferem de acordo com a condição do sistema, uma vez que este pode estar submetido a uma condição de operação extrema (DEC), condição de operação normal (DOC), e a condição transitória que corresponde ao transporte da plataforma até o local de destino (TRANSIT).

Para a elaboração das informações referente à intensidade de ondas, um diagrama de dispersão de ondas é elaborado a partir das distribuições de altura significativa de onda ( $H_s$ ) e período ( $T_P$ ), sendo obtidos a partir do processamento de informações registradas em determinado intervalo de tempo (FRANZ et al., 2016).

Importante ressaltar que o projeto de engenharia de todas as unidades FPSO estudadas neste trabalho, deve seguir os mesmos parâmetros meteorológicos e oceanográficos informados em uma única especificação de dados, já que se encontram localizadas na mesma região da Bacia de Santos, conforme ilustrado na Figura 12.



Fig. 12 Indicação dos campos de exploração de óleo e gás da Bacia de Santos localizados na Bacia de Santos. Fonte: (S/D).

Quando se trata de probabilidade de ocorrências de fenômenos naturais, considera-se o período de retorno que é o tempo em anos em que as ondas máximas ocorrerão novamente. As amostras de alturas significativas de ondas são identificadas e extrapoladas através da distribuição de *Weibull* para variados períodos de retorno.

A distribuição de *Weibull* é um dos métodos mais usuais na análise de valores extremos de altura significativa da onda para uma distribuição de longo termo. É uma das distribuições

mais utilizadas em trabalhos desenvolvidos em renomados centros de estudos de climatologia de ondas (PICCININI, 2008).

Em geral, projetos de engenharia avaliam o sistema de tubulações submetido a três diferentes condições, as quais variam de acordo com o tempo de retorno, conforme indicado na Tabela 12.

| Tabela 12 Condig | ções de análise segundo os dados de acelerações | •  |
|------------------|-------------------------------------------------|----|
|                  |                                                 | DI |

| CONDIÇÃO                          | PERIODO<br>DE<br>RETORNO |
|-----------------------------------|--------------------------|
| DOC (Condição de Projeto para     | 1 ano                    |
| Operação)                         |                          |
| DEC (Condição de Projeto Extrema) | 100 anos                 |
| TRANSIT (Transitória)             | 10 anos                  |

Para a análise de fadiga, as informações contempladas no estudo oceanográfico servem de base para a obtenção da quantidade de ciclos de ocorrências das ondas significativas. Além disso, é com base neste estudo que são obtidas as amplitudes de deslocamentos da viga navio e acelerações impostas às tubulações.

As acelerações dos módulos de um FPSO, bem como a aceleração do centro de gravidade do navio, encontram-se discriminadas em especificação única para cada plataforma, pois variam de acordo com o formato do casco do FPSO. As acelerações destes variados pontos são obtidas a partir das equações, conforme documento *Acceleration Data*:

$$a'_{l} = a_{l} + g.sen(\theta_{PITCH})$$
(EQ20)

$$a'_t = a_t + g.sen(\theta_{ROLL})$$
 (EQ21)

$$a_v = a_v + g \tag{EQ22}$$

.

onde:

 $\theta_{PITCH}$  – Ângulo de inclinação;

 $\theta_{ROLL}$  – Ângulo de rolamento;

 $a_l$  – aceleração dinâmica longitudinal para cada ponto;

 $a_t$  - aceleração dinâmica transversal para cada ponto;

 $a_v$  - aceleração dinâmica vertical para cada ponto;

g – aceleração da gravidade (9,81 m/s<sup>2</sup>).



Fig. 13 Nomenclatura dos movimentos da embarcação (Fonte: A Six Degrees of Freedom Ship Simulation System for Maritime Education, 2010).

Esta especificação informa a máxima aceleração esperada para uma única amplitude. Os valores máximos baseiam-se em pesquisas de todos os resultados obtidos de diferentes ângulos e elevações do navio, bem como variadas condições de onda. Os resultados apresentados nesta dissertação levam em consideração a máxima aceleração longitudinal, transversal e vertical nos variados pontos de interesse de acordo com todas as condições de DOC, DEC e TRANSIT.

Dessa forma, os valores de acelerações devem ser aplicados em todas as direções e sentidos, conforme abaixo:

- U1 aceleração no eixo x (g);
- U2 aceleração no eixo y (g);
- U3 aceleração no eixo z (g).

Importante registrar que, geralmente, os projetos de engenharia adotam o eixo de referências de acordo com o apresentado no canto superior esquerdo da Figura 13 sendo, o eixo "x" longitudinal ao navio, o eixo "y" transversal, e o eixo "z" representando o eixo vertical da embarcação. Entretanto, determinados projetos já executados, como o caso do estudos de caso 5.1.1 e 5.1.2 que serão apresentados no Capítulo V, adotaram eixo de referência diferente, sendo bastante comum em projetos de tubulações representar a direção vertical pelo eixo "y", a direção longitudinal pelo eixo "x" e a direção transversal pelo eixo "z".

3.1.2.1 Aplicação de dados de acelerações no software de análise de tensões

A Tabela 13 apresenta um exemplo de dados de acelerações informados no Acceleration Data para a condição DOC em determinada área/módulo do FPSO. São informadas as magnitudes das acelerações de *roll*, *pitch* e *heave* da plataforma em termos da aceleração da gravidade.

Tabela 13 Acelerações inerciais para DOC informadas no Acceleration Data.

| CONDIÇÃO | ACELERAÇÃO |        |       |  |
|----------|------------|--------|-------|--|
|          | X (g)      | Y (g)  | Z (g) |  |
| DOC      | 0,200      | -0,170 | 0,075 |  |

A aplicação das acelerações no *software* de análise de flexibilidade se dá através de vetores U1, U2 e U3, conforme indicado na Tabela 14.

# Tabela 14 Composição de acelerações (DOC).

| EIXO  | VETOR     | VETOR  | VETOR |
|-------|-----------|--------|-------|
|       | <b>U1</b> | U2     | U1    |
| X (g) | 0,200     | -      | -     |
| Y (g) | -         | -0,170 | -     |
| Z (g) | -         | -      | 0,075 |

A fim de simular os efeitos das 3 componentes de aceleração em todas as direções e sentidos, os vetores U1, U2, e U3 são combinados um a um, ora positivamente, ora negativamente, resultando em um total de 8 combinações, conforme a Tabela 15.

Tabela 15 Combinação dos vetores acelerações.

| +U1+U2+U3 |
|-----------|
| +U1-U2+U3 |
| +U1+U2-U3 |
| +U1-U2-U3 |
| -U1+U2+U3 |
| -U1-U2+U3 |
| -U1+U2-U3 |
| -U1-U2-U3 |

# 3.1.2.2 Tensão Média

Segundo a norma ABS *Spectral Based Fatigue Analysis* (2018), o processo de tensão em componentes estruturais de uma instalação *offshore* pode ser considerado por uma sobreposição de tensões induzidas por ondas e também pelos carregamentos estáticos.

O gráfico da Figura 14 apresenta as tensões ocasionadas devido aos ciclos térmicos (LCF - *Low Cycle Fatigue*), e também pelas acelerações e deslocamentos provocados pelas ondas.



Fig. 14 Gráfico do ciclo de tensão devido à temperatura (LCF – *Low Cycle Fatigue*) e devido aos deslocamentos e acelerações (HCF – *High Cycle Fatigue*).

É conhecido o efeito da tensão média como parcela de contribuição para o processo de fadiga, entretanto, devido à grande complexidade de sua determinação, o seu efeito normalmente é desprezado no cálculo de fadiga executado nos projetos de tubulações.

### 3.1.2.3 Aceleração Resultante (SRSS)

O apêndice G da norma DNV RP D-101 aborda os principais casos operacionais e ocasionais de carregamentos de tubulações *offshore*. Este apêndice recomenda que o resultado da raiz quadrada do somatório dos quadrados das tensões originadas pelas acelerações deve ser considerado como uma combinação ocasional. Sendo assim, um acréscimo de tensão de 1,33 sobre a tensão admissível a quente do material (S<sub>H</sub>) poderá ser utilizada para esta avaliação conforme permite a norma ASME B31.3 (2018). Os casos L27 e L36 dos casos de carregamentos da Tabela 17 retratam esta verificação para as condições de temperatura T1 e T2, respectivamente.

3.1.2.4 Efeito da não linearidade

Uma atenção especial deve ser dada aos efeitos de não linearidade ao se formular os casos de carregamento de análise de flexibilidade de tubulações, por influenciarem no resultado das tensões. Uma vez formulados ou ordenados de maneira inadequada, ou seja, utilizando-se casos de cargas isolados para a consideração dos vetores acelerações (U1, U2 e U3), ao invés de considerá-los combinados com o caso de operação, para que, posteriormente, sejam subtraídos em uma combinação algébrica, traz resultados imprecisos de tensões. Representam efeitos não lineares de uma análise de flexibilidade de tubulações os seguintes itens:

- fator de atrito entre o suporte da tubulação e a estrutura;

- consideração de folga (*gap*) que permitem a tubulação um deslocamento definido até tocar o suporte;

 - consideração de restrições em apenas um sentido, como por exemplo, uma restrição vertical "+Y", ao invés de uma restrição "+/-Y";

- perda de apoio da tubulação - ocorre quando, devido à proximidade com um trecho vertical e à temperatura, a tubulação acaba não tendo contato com o suporte mais próximo.

Um comparativo de resultados de casos de carregamentos levando em consideração a questão da não linearidade dos cálculos é abordado no estudo de caso desta dissertação.

### 3.1.2.5 Cálculo de fadiga pelo software CAESAR II

O *software* CAESAR II utiliza as curvas S-N e a regra de *Palmgren Miner* para o cálculo do dano acumulado por fadiga. Quanto à tensão de fadiga do sistema de tubulações, esta é calculada conforme descrito no Apêndice 11.1.4 desta dissertação.

As tensões de fadiga admissíveis são interpoladas *logaritmicamente* a partir da curva de fadiga inserida no *software*, considerando amplitudes de tensão de pico a pico, e com base no número de ciclos designados para o caso de carga.

Na análise estática devido a carregamentos como, por exemplo, expansão térmica, pressão, etc., a tensão calculada é assumida como um valor cíclico com amplitude de pico a pico, desta forma, para uma análise de fadiga devido a carregamentos variáveis desta mesma natureza, a tensão admissível à fadiga é extraída diretamente da curva de fadiga, uma vez que esta foi definida com base em amplitudes de tensão de pico a pico.

Para a análise dinâmica, a tensão calculada é assumida como um valor cíclico de 0 a pico (por exemplo, vibração, terremoto, etc.), de modo que a tensão admissível extraída da curva de fadiga deve ser dividida por dois antes de ser usada na comparação.

Os casos de carregamentos do tipo FAT (*fatigue*) devem ser construídos relacionando o caso de carregamento a ser avaliado, além de levar em consideração a quantidade prevista de ciclos para cada evento.

O *software* fornece duas maneiras para visualização dos resultados dos casos de carregamentos do tipo FAT. O primeiro é o resultado de tensão através do recurso "*stress summary*" que mostra a maior tensão de fadiga calculada para um determinado ponto nodal. A outra maneira de apresentação do resultado se dá em forma de dano através da ferramenta "*cumulative usage*". Para os casos em que exista mais de um caso de carga cíclica contribuindo para uma falha por fadiga, esta mesma ferramenta deve ser utilizada, desta vez, selecionando todos os casos de carga FAT que contribuem para a geração do dano no sistema de tubulações.

3.1.2.6 Range de tensão devido à aceleração

Considerando que o efeito das acelerações inerciais ocorrerá para os dois sentidos de cada eixo de atuação, o caso de carregamento para aceleração sugerido neste item contempla o *range* da aceleração (amplitude de pico a pico), conforme apresentado na Tabela 16.

| Combinação 1 | (+U1+U2+U3)-(-U1-U2-U3) |
|--------------|-------------------------|
| Combinação 2 | (+U1-U2+U3)-(-U1+U2-U3) |
| Combinação 3 | (+U1+U2-U3)-(-U1-U2+U3) |
| Combinação 4 | (+U1-U2-U3)-(-U1+U2+U3  |
| Combinação 5 | (-U1+U2+U3)-(+U1-U2-U3) |
| Combinação 6 | (-U1-U2+U3)-(+U1+U2-U3) |
| Combinação 7 | (-U1+U2-U3)-(+U1-U2+U3) |
| Combinação 8 | (-U1-U2-U3)-(+U1+U2+U3) |

Tabela 16 Range dos casos de tensões das acelerações combinadas.

#### 3.1.2.7 Casos de Carregamento

Como exemplo, levando somente em consideração o efeito das acelerações impostas às tubulações do FPSO, e desprezando-se, neste momento, o efeito dos deslocamentos de *SAG* e *HOG*, a Tabela 17 traz uma proposta de combinação de casos de carregamento, seja para a condição DOC ou DEC.

Importante ressaltar que estes casos de carregamento ainda não consideram o fator de altura de onda, tão pouco a definição da quantidade de faixas de alturas, sendo seu único objetivo a apresentação da composição dos casos com atenção voltada para a minimização de imprecisões de resultados oriundos do efeito da não linearidade no cálculo de tensões. Conforme observado na Tabela 17, os vetores acelerações são combinados com o caso de operação para a condição de projeto máxima L1, conforme as linhas L3 à L10, e para a condição de projeto mínima L2, conforme as linhas L11 à L18. Posteriormente, estes são combinados algebricamente com o respectivo caso de operação (L1 e L2), resultando nos casos L19 ao L26 para a condição de projeto máxima, e L28 ao L36 para a condição de projeto mínima.

|     | CASO DE<br>CARREGAMENTO | DESCRIÇÃO                                | TIPO DE<br>TENSÃO | Nº CICLOS |
|-----|-------------------------|------------------------------------------|-------------------|-----------|
| L1  | W+T1+P1+D1              | OPERAÇÃO – CONDIÇÃO DE<br>PROJETO MÁXIMA | OPE               | -         |
| L2  | W+T2+P1+D2              | OPERAÇÃO – CONDIÇÃO DE<br>PROJETO MÍNIMA | OPE               | -         |
| L3  | W+T1+P1+D1+U1+U2+U3     | COMBINAÇÃO 1 – TEMP. 1                   | OPE               | _         |
| L4  | W+T1+P1+D1+U1+U2-U3     | COMBINAÇÃO 2 – TEMP. 1                   | OPE               | _         |
| L5  | W+T1+P1+D1+U1-U2+U3     | COMBINAÇÃO 3 – TEMP. 1                   | OPE               | -         |
| L6  | W+T1+P1+D1+U1-U2-U3     | COMBINAÇÃO 4 – TEMP. 1                   | OPE               | -         |
| L7  | W+T1+P1+D1-U1+U2+U3     | COMBINAÇÃO 5 – TEMP. 1                   | OPE               | -         |
| L8  | W+T1+P1+D1-U1+U2-U3     | COMBINAÇÃO 6 – TEMP. 1                   | OPE               | -         |
| L9  | W+T1+P1+D1-U1-U2+U3     | COMBINAÇÃO 7 – TEMP. 1                   | OPE               | -         |
| L10 | W+T1+P1+D1-U1-U2-U3     | COMBINAÇÃO 8 – TEMP. 1                   | OPE               | -         |
| L11 | W+T2+P1+D2+U1+U2+U3     | COMBINAÇÃO 1 – TEMP. 2                   | OPE               | -         |
| L12 | W+T2+P1+D2+U1+U2-U3     | COMBINAÇÃO 2 – TEMP. 2                   | OPE               | -         |
| L13 | W+T2+P1+D2+U1-U2+U3     | COMBINAÇÃO 3 – TEMP. 2                   | OPE               | -         |
| L14 | W+T2+P1+D2+U1-U2-U3     | COMBINAÇÃO 4 – TEMP. 2                   | OPE               | -         |
| L15 | W+T2+P1+D2-U1+U2+U3     | COMBINAÇÃO 5 – TEMP. 2                   | OPE               | -         |
| L16 | W+T2+P1+D2-U1+U2-U3     | COMBINAÇÃO 6 – TEMP. 2                   | OPE               | -         |
| L17 | W+T2+P1+D2-U1-U2+U3     | COMBINAÇÃO 7 – TEMP. 2                   | OPE               | -         |
| L18 | W+T2+P1+D2-U1-U2-U3     | COMBINAÇÃO 8 – TEMP. 2                   | OPE               | -         |
| L19 | L3-L1                   | +U1+U2+U3                                | SUS               | -         |
| L20 | L4-L1                   | +U1+U2-U3                                | SUS               | -         |
| L21 | L5-L1                   | +U1-U2+U3                                | SUS               | -         |
| L22 | L6-L1                   | +U1-U2-U3                                | SUS               | -         |
| L23 | L7-L1                   | -U1+U2+U3                                | SUS               | -         |
| L24 | L8-L1                   | -U1+U2-U3                                | SUS               | -         |
| L25 | L9-L1                   | -U1-U2+U3                                | SUS               | -         |
| L26 | L10-L1                  | -U1-U2-U3                                | SUS               | -         |
| L27 | L19                     | +U1+U2+U3 - SRSS                         | OCC               | -         |
| L28 | L11-L2                  | +U1+U2+U3                                | SUS               | -         |
| L29 | L12-L2                  | +U1+U2-U3                                | SUS               | -         |
| L30 | L13-L2                  | +U1-U2+U3                                | SUS               | -         |
| L31 | L14-L2                  | +U1-U2-U3                                | SUS               | -         |
| L32 | L15-L2                  | -U1+U2+U3                                | SUS               | -         |
| L33 | L16-L2                  | -U1+U2-U3                                | SUS               | -         |
| L34 | L17-L2                  | -U1-U2+U3                                | SUS               | -         |
| L35 | L18-L2                  | -U1-U2-U3                                | SUS               | -         |
| L36 | L28                     | +U1+U2+U3 - SRSS                         | OCC               | -         |
| L37 | L19-L35                 | (+U1+U2+U3)-(-U1-U2-U3)                  | SUS               | -         |
| L38 | L20-L34                 | (+U1-U2+U3)-(-U1+U2-U3)                  | SUS               | -         |

## Tabela 17 Casos de carregamentos - Acelerações.
|     | CASO DE<br>CARRECAMENTO | DESCRIÇÃO               | TIPO DE<br>TENSÃO | Nº CICLOS            |
|-----|-------------------------|-------------------------|-------------------|----------------------|
| L39 | L21-L33                 | (+U1+U2-U3)-(-U1-U2+U3) | SUS               | -                    |
| L40 | L22-L32                 | (+U1-U2-U3)-(-U1+U2+U3  | SUS               | -                    |
| L41 | L23-L31                 | (-U1+U2+U3)-(+U1-U2-U3) | SUS               | -                    |
| L42 | L24-L30                 | (-U1-U2+U3)-(+U1+U2-U3) | SUS               | -                    |
| L43 | L25-L29                 | (-U1+U2-U3)-(+U1-U2+U3) | SUS               | -                    |
| L44 | L26-L28                 | (-U1-U2-U3)-(+U1+U2+U3) | SUS               | -                    |
| L45 | L27,L36                 | +U1+U2+U3 - SRSS        | OCC               | -                    |
| L46 | L37                     | FADIGA – Combinação 1   | FAT               | Nº Ciclos<br>total/8 |
| L47 | L38                     | FADIGA – Combinação 2   | FAT               | Nº Ciclos<br>total/8 |
| L48 | L39                     | FADIGA – Combinação 3   | FAT               | N° Ciclos<br>total/8 |
| L49 | L40                     | FADIGA – Combinação 4   | FAT               | N° Ciclos<br>total/8 |
| L50 | L41                     | FADIGA – Combinação 5   | FAT               | N° Ciclos<br>total/8 |
| L51 | L42                     | FADIGA – Combinação 6   | FAT               | Nº Ciclos<br>total/8 |
| L52 | L43                     | FADIGA – Combinação 7   | FAT               | N° Ciclos<br>total/8 |
| L53 | L44                     | FADIGA – Combinação 8   | FAT               | Nº Ciclos<br>total/8 |

Onde:

W - Peso da tubulação + fluido;

T1 – Temperatura de Projeto Máxima;

T2 – Temperatura de Projeto Mínima;

P1 – Pressão de Projeto;

D1 – Deslocamentos impostos na tubulação para condição de Projeto Máxima (provenientes de um equipamento);

D2 – Deslocamentos impostos na tubulação para condição de Projeto Mínima (provenientes de um equipamento).

SRSS – Aceleração resultante (raiz quadrada da soma dos quadrados – Square Root Sum of Squares).

#### 3.1.3 Tensões devido aos deslocamentos estruturais

As ondas em alto mar possuem comprimentos da ordem do comprimento da própria embarcação, fazendo com que o navio passe por situações nas quais a sua estrutura não se encontre uniformemente apoiada pelas forças de empuxo. Quando sua meia nau passa pela crista, ou pelo cavado, de uma dessas ondas, surgem grandes momentos fletores ao longo de sua estrutura, momentos de tosamento e alquebramento, que geram cargas significativas nos chapeamentos do fundo e do convés. Nos projetos de engenharia, estas condições são denominadas *sagging* e *hogging*, respectivamente (ALVES, 2015).



Fig. 15 Navio submetido às condições de *tosamento* (a) e alquebramento (b), devido à passagem de uma onda (MENDONÇA, 2016).

Os deslocamentos da estrutura do navio devido aos movimentos de *sagging* e *hogging* serão transmitidos para todos os módulos, e também, para a estrutura de sustentação das variadas tubulações que são interligadas aos módulos da plataforma. Quanto menos rígidos forem os módulos da plataforma, maiores serão os deslocamentos relativos presentes naquele determinado módulo. Esta fonte de fadiga corresponde a um regime de alto ciclo de repetições (HCF – *High Cycle Fatigue*).

3.1.3.1 Consideração de Fatores de Altura de Onda

Sobre a aplicação de fatores para adequação dos níveis de deslocamentos e acelerações da estrutura do FPSO em relação às diferentes alturas de onda, pressupõe-se um comportamento linear entre a altura das ondas e as diferentes solicitações e carregamentos provocadas por estas na estrutura do FPSO. Estes deslocamentos e acelerações são impostos às tubulações para fins de análise de tensões e fadiga. Conforme já observado no item 2.9 desta dissertação, sobre a revisão do documento ABS – *Spectral-based fatigue analysis for* FPSO *installations* (2018), a análise espectral da fadiga baseia-se na linearidade presumida das cargas induzidas pelas ondas em relação às próprias ondas. Esta suposição é aplicável para instalações *offshore*, como FPSOs e FSOs.

O apêndice W da norma ASME B31.3 (2018) também considera que as tensões causadas pela ação das ondas são proporcionais à altura das ondas. Deve-se ressaltar, entretanto, que o período da onda varia com sua altura, conforme pode ser observado, por exemplo, na Tabela 18 extraída do *Metocean Data*. Consequentemente, as relações entre ondas de alturas diferentes e de períodos distintos, com as acelerações e os deslocamentos estruturais do FPSO, podem ser não-lineares, sendo esta relação dependente do RAO do FPSO. Para fins de ilustração deste conceito, a Figura 16 apresenta RAOs de *roll e pitch* para FPSOs com diferentes tipos de cascos, onde nota-se que as amplitudes de *roll e pitch* dependem não apenas da altura das ondas, mas também do período destas. Desta forma, considera-se que para fins de análise de fadiga, o ideal seria utilizar dados de deslocamentos e acelerações da estrutura do FPSO, obtidos a partir de funções de transferência (RAO) do FPSO em função dos parâmetros das ondas. Na falta destas funções de transferência específicas para deslocamentos e acelerações, considera-se a relação linear entre altura de onda e as tensões causadas pelas acelerações e deslocamentos.

Tabela 18 Distribuição de alturas significativas e períodos de pico de ondas na região central da Bacia de Santos, Metocean Data.

|      |       |      |      |      |       |       |       |      |      | Тр   | (s)  |      |      |      |      |      |      |      |      |       |       |       |
|------|-------|------|------|------|-------|-------|-------|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------|-------|
| Но   | (m)   | 3    | 4    | 5    | 6     | 7     | 8     | 9    | 10   | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20   | Freq  | %     | Mean  |
| ns   | (11)  | 4    | 5    | 6    | 7     | 8     | 9     | 10   | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20   | 21   |       |       | Тр    |
| 0.0  | 0.5   | 1    | 0    | 0    | 1     | 2     | 2     | 1    | 0    | 0    | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 8     | 0.01  | 8.24  |
| 0.5  | 1.0   | 107  | 113  | 205  | 256   | 273   | 159   | 112  | 74   | 68   | 50   | 41   | 38   | 12   | 4    | 0    | 0    | 0    | 0    | 1512  | 2     | 7.73  |
| 1.0  | 1.5   | 15   | 938  | 1115 | 1792  | 3608  | 2505  | 692  | 373  | 283  | 260  | 108  | 103  | 31   | 11   | 3    | 0    | 2    | 3    | 11842 | 15.64 | 7.7   |
| 1.5  | 2.0   | 1    | 349  | 3682 | 3524  | 4602  | 6028  | 2948 | 1626 | 993  | 534  | 251  | 174  | 69   | 26   | 18   | 8    | 1    | 2    | 24836 | 32.8  | 8.12  |
| 2.0  | 2.5   | 0    | 13   | 1265 | 4995  | 2430  | 2755  | 2041 | 1870 | 1806 | 982  | 523  | 284  | 105  | 32   | 10   | 8    | 2    | 0    | 19121 | 25.25 | 8.74  |
| 2.5  | 3.0   | 0    | 6    | 109  | 2114  | 2404  | 1040  | 858  | 798  | 879  | 1021 | 514  | 288  | 108  | 20   | 8    | 6    | 1    | 1    | 10175 | 13.44 | 9.27  |
| 3.0  | 3.5   | 0    | 1    | 4    | 403   | 1240  | 856   | 277  | 292  | 294  | 424  | 431  | 280  | 77   | 18   | 8    | 1    | 1    | 1    | 4608  | 6.09  | 9.82  |
| 3.5  | 4.0   | 0    | 0    | 0    | 43    | 268   | 550   | 189  | 91   | 140  | 141  | 139  | 209  | 75   | 16   | 5    | 1    | 0    | 0    | 1867  | 2.47  | 10.45 |
| 4.0  | 4.5   | 0    | 0    | 0    | 3     | 31    | 207   | 161  | 48   | 47   | 63   | 68   | 89   | 73   | 17   | 3    | 0    | 0    | 0    | 810   | 1.07  | 11.16 |
| 4.5  | 5.0   | 0    | 0    | 0    | 0     | 4     | 48    | 116  | 48   | 15   | 21   | 41   | 57   | 35   | 19   | 6    | 0    | 0    | 0    | 410   | 0.54  | 11.75 |
| 5.0  | 5.5   | 0    | 0    | 0    | 0     | 0     | 16    | 45   | 60   | 19   | 15   | 16   | 22   | 20   | 7    | 8    | 1    | 0    | 0    | 229   | 0.3   | 11.88 |
| 5.5  | 6.0   | 0    | 0    | 0    | 0     | 0     | 2     | 22   | 44   | 19   | 7    | 6    | 15   | 9    | 0    | 0    | 0    | 0    | 0    | 124   | 0.16  | 11.5  |
| 6.0  | 6.5   | 0    | 0    | 0    | 0     | 0     | 0     | 10   | 18   | 22   | 0    | 3    | 11   | 2    | 0    | 0    | 0    | 0    | 0    | 66    | 0.09  | 11.55 |
| 6.5  | 7.0   | 0    | 0    | 0    | 0     | 0     | 0     | 3    | 12   | 12   | 2    | 0    | 7    | 3    | 0    | 0    | 0    | 0    | 0    | 39    | 0.05  | 11.99 |
| 7.0  | 7.5   | 0    | 0    | 0    | 0     | 0     | 0     | 4    | 4    | 14   | 1    | 0    | 1    | 5    | 0    | 0    | 0    | 0    | 0    | 29    | 0.04  | 11.99 |
| 7.5  | 8.0   | 0    | 0    | 0    | 0     | 0     | 0     | 2    | 1    | 1    | 4    | 0    | 0    | - 3  | 0    | 0    | 0    | 0    | 0    | 11    | 0.01  | 12.51 |
| 8.0  | 8.5   | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 5    | 0    | 1    | 0    | 1    | 2    | 0    | 0    | 0    | 0    | 0    | 9     | 0.01  | 12.47 |
| 8.5  | 9.0   | 0    | 0    | 0    | 0     | 0     | 0     | 1    | 6    | 3    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 10    | 0.01  | 10.82 |
| 9.0  | 9.5   | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 1    | 1    | 1    | 0    | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 4     | 0.01  | 12.88 |
| 9.5  | 10.0  | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 2    | 0    | 0    | 0    | 0    | 2     | 0     | 16.95 |
| 10.0 | 10.5  | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     |
| 10.5 | 11.0  | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     |
| Fr   | req   | 124  | 1420 | 6380 | 13131 | 14862 | 14168 | 7482 | 5371 | 4616 | 3527 | 2141 | 1580 | 629  | 173  | 69   | 25   | 7    | 7    | 75712 |       |       |
|      | %     | 0.16 | 1.88 | 8.43 | 17.34 | 19.63 | 18.71 | 9.88 | 7.09 | 6.1  | 4.66 | 2.83 | 2.09 | 0.83 | 0.23 | 0.09 | 0.03 | 0.01 | 0.01 |       |       |       |
| Mea  | an Hs | 0.86 | 1.35 | 1.75 | 2.07  | 2.03  | 2.04  | 2.2  | 2.31 | 2.38 | 2.49 | 2.69 | 2.9  | 3.14 | 3.12 | 3.05 | 2.43 | 2.07 | 1.96 |       |       |       |

Fonte: (METOCEAN DATA).



Fig. 16 RAO de *roll* e *pitch* para os cascos FPSO-BR MC, FPSO-BR P57 e FPSO convencional P54 (SENRA, 2011).

Entretanto, devido à complexidade de levantamento de informações, durante a fase do projeto, referente ao comportamento do casco que será utilizado para atender a determinado FPSO, simplificações em relação à definição dos fatores de alturas de onda devem ser feitas, conforme orienta a norma ASME B31.3 (2018) e a norma ABS – *Spectral-based fatigue analysis for* FPSO *installations* (2018). Portanto, na falta de funções de transferência específicas para determinação de tensões devido aos deslocamentos e acelerações do FPSO, considera-se a relação linear entre altura de onda e as tensões causadas pelas acelerações e deslocamentos.

Outro aspecto importante se refere ao deslocamento estático da embarcação. Conforme orienta a norma UKOOA – *FPSO Design Guidance Notes for UKCS Service* (2002), um fator de 0,6 deve ser aplicado aos valores de deslocamentos da viga navio informados pela equipe de estrutura metálica naval. Isso se deve à consideração do efeito da deformação estática que ocorre quando a embarcação se encontra em águas calmas, que geralmente corresponde a cerca de 40% da deformação total calculada pela equipe de estrutura naval.

#### 3.1.3.1.1 Determinação dos Fatores de Altura de Onda

No intuito de determinar a distribuição dos danos a partir da quantidade de ciclos indicada no METOCEAN DATA foi realizado estudo com base nas curvas D e F3 da norma DNV RP C203, uma vez que, de acordo com a Equação 6 e a Tabela 1 apresentadas no Capítulo II desta dissertação, é possível determinar a quantidade de ciclos até a falha para determinada variação de tensão ( $\Delta \sigma$ ).

Conforme já visto, o METOCEAN DATA reúne as informações de alturas e períodos de ondas levantadas em intervalos de 3 horas na região em que a plataforma irá operar, conforme mostrado na Tabela 18.

O número de ciclos de ondas  $N_n$ , para cada faixa de altura de onda n, pode ser obtido através da Equação 23:

$$N_n = \left(\frac{3600 \cdot 3}{M_{Tp}}\right). Freq$$
(EQ23)

onde:

M<sub>Tp</sub> – período médio associado à altura significativa de onda (Hs);

Freq – frequência (Hz).

Uma vez determinado o tempo total correspondente para a quantidade de ciclos obtidos com a Equação 23, é determinada a quantidade de ciclos de repetições das ondas para a vida útil do projeto que é de 25 anos. Para a onda centenária, a altura considerada nesta dissertação foi de 10,25 metros de altura.

Conforme comentado anteriormente a respeito da consideração da linearidade do fator de altura de onda, tanto para o apêndice W da ASME B31.3, quanto para a norma ABS – *Spectral-based fatigue analysis for* FPSO *installations* (2018), o fator de altura de onda deve ser considerado linear e pode ser determinado através da Equação 24.

$$F_n = \frac{\mathrm{H_n}}{\mathrm{H_C}} \tag{EQ. 24}$$

onde:

n - indice n = 1, 2, 3...

Fn - Fator de altura de onda;

Hn –altura de onda máxima da faixa (n);

HC – altura da onda centenária (10,25 m).

No cálculo dos fatores de altura onda conforme a EQ24, optou-se por utilizar a altura de onda máxima da faixa, ao invés da altura média da faixa, uma vez que desta forma são

obtidos fatores mais elevados, o que favorece a segurança do projeto de tubulações. A Tabela 19 traz os resultados de número de ciclos encontrados para as diferentes alturas de ondas que vão ocorrer ao longo de toda a vida útil da unidade, com base nas informações disponibilizadas no *Metocean Data*, bem como os respectivos fatores de altura de onda.

| Hs –<br>de | Altura<br>onda | MHs –<br>Altura<br>Média<br>por<br>Faixa | Frequência | MTp<br>(s) | Ciclos     | Ciclos p/<br>1 ano | Ciclos p/<br>25 anos | Fator<br>de<br>Altura |
|------------|----------------|------------------------------------------|------------|------------|------------|--------------------|----------------------|-----------------------|
| 0          | 0,5            | 0,25                                     | 8          | 8,24       | 10.485     | 404                | 10.110               | 0,05                  |
| 0,5        | 1              | 0,75                                     | 1512       | 7,73       | 2.112.497  | 81.473             | 2.036.827            | 0,10                  |
| 1          | 1,5            | 1,25                                     | 11842      | 7,7        | 16.609.558 | 640.584            | 16.014.605           | 0,15                  |
| 1,5        | 2              | 1,75                                     | 24836      | 8,12       | 33.033.103 | 1.273.994          | 31.849.859           | 0,20                  |
| 2          | 2,5            | 2,25                                     | 19121      | 8,74       | 23.627.780 | 911.257            | 22.781.434           | 0,24                  |
| 2,5        | 3              | 2,75                                     | 10175      | 9,27       | 11.854.369 | 457.190            | 11.429.746           | 0,29                  |
| 3          | 3,5            | 3,25                                     | 4608       | 9,82       | 5.067.862  | 195.453            | 4.886.331            | 0,34                  |
| 3,5        | 4              | 3,75                                     | 1867       | 10,45      | 1.929.531  | 74.417             | 1.860.415            | 0,39                  |
| 4          | 4,5            | 4,25                                     | 810        | 11,16      | 783.871    | 30.232             | 755.793              | 0,44                  |
| 4,5        | 5              | 4,75                                     | 410        | 11,75      | 376.851    | 14.534             | 363.352              | 0,49                  |
| 5          | 5,5            | 5,25                                     | 229        | 11,88      | 208.182    | 8.029              | 200.725              | 0,54                  |
| 5,5        | 6              | 5,75                                     | 124        | 11,5       | 116.452    | 4.491              | 112.281              | 0,59                  |
| 6          | 6,5            | 6,25                                     | 66         | 11,55      | 61.714     | 2.380              | 59.504               | 0,63                  |
| 6,5        | 7              | 6,75                                     | 39         | 11,99      | 35.129     | 1.355              | 33.871               | 0,68                  |
| 7          | 7,5            | 7,25                                     | 29         | 11,99      | 26.122     | 1.007              | 25.186               | 0,73                  |
| 7,5        | 8              | 7,75                                     | 11         | 12,51      | 9.496      | 366                | 9.156                | 0,78                  |
| 8          | 8,5            | 8,25                                     | 9          | 12,47      | 7.795      | 301                | 7.516                | 0,83                  |
| 8,5        | 9              | 8,75                                     | 10         | 10,82      | 9.982      | 385                | 9.624                | 0,88                  |
| 9          | 9,5            | 9,25                                     | 4          | 12,88      | 3.354      | 129                | 3.234                | 0,93                  |
| 9,5        | 10             | 9,75                                     | 2          | 16,95      | 1.274      | 49                 | 1.229                | 0,98                  |
| 10         | 10,25          | 10,125                                   | 0          | 0          | 0          | 0                  | 1                    | 1,00                  |

Tabela 19 Determinação do fator de altura de onda para a Bacia de Santos.

Fonte: (S/D).

De acordo com o Apêndice W da norma ASME B31.3 (2018), a variação de tensão é proporcional à maior altura de onda.

#### 3.1.3.2 Distribuição do Dano por Fadiga em função da Altura de Onda

Para estudo da distribuição do dano por fadiga em função da altura de onda, determinadas variações de tensões máximas de 20 MPa, 40 MPa, 60 MPa, 80 MPa, 100 MPa e 120 MPa foram consideradas para avaliação da distribuição do dano por fadiga calculadas diretamente a partir das curvas D e F3. A partir destas tensões máximas, que correspondem a tensões hipotéticas na tubulação causadas pela onda de maior altura (H = 10,25 m), as tensões correspondentes às demais alturas de onda foram calculadas utilizando os fatores de altura de

onda da Tabela 19. O dano por fadiga foi calculado considerando o número de ciclos para cada faixa de altura de onda indicado na Tabela 19. O número de ciclos para falha por fadiga, correspondente às tensões de cada faixa de altura onda, foi então determinado a partir das curvas de fadiga D e F3, sendo o dano por fadiga calculado de acordo com a regra de *Palmgren-Miner*. Primeiramente, foram realizadas simulações com o objetivo de identificar o efeito das tensões e da curva de fadiga na distribuição de dano por faixa de altura de onda. A partir dos gráficos das Figuras 17 e 18, obtidos para ondas agrupadas em faixas de 0,5m, verifica-se que a amplitude de variação de tensão tem pouca influência na distribuição do dano para as curvas D e F3. Todos os resultados foram obtidos para curvas com o mesmo agrupamento de altura de onda 0,5 em 0,5 metros. As curvas correspondentes às tensões máximas de 100 e 120 MPa não foram apresentadas no gráfico da Figura 18 por implicarem em dano por fadiga muito superior a 1.



Fig. 17 Gráfico da distribuição do dano para diferentes variações de tensões da curva D.



Fig. 18 Gráfico da distribuição do dano para diferentes variações de tensões da curva F3.

O estudo identificou também que a distribuição do dano é bastante semelhante para as curvas F3 e D. Abaixo, a Figura 19 demonstra a distribuição do dano referente às curvas F3 e D da norma DNV RP C203, quando considerado uma mesma variação de tensão máxima de 60 MPa.



Fig. 19 Gráfico da distribuição do dano para diferentes curvas de fadiga (F3 e D) da DNV RP C-203 para  $\Delta \sigma = 60$  MPa.

De acordo com o gráfico da Figura 18, a maior concentração de dano ocorre nas faixas com alturas entre 2 e 5,0 metros com ciclos de repetições bastante significativos, conforme pode ser constatado na Tabela 19. Os estudos de caso apresentados no Capítulo V desta dissertação apresentam a distribuição do dano por faixa de altura de onda de variados sistemas de tubulações, nos quais os resultados encontrados confirmam o que foi obtido neste gráfico através de cálculos.

Um fator determinante em relação à distribuição do dano por fadiga é o agrupamento das faixas de altura de onda. Quanto maior a quantidade de faixa de menores intervalos de alturas, mais refinados serão os resultados obtidos. Na Figura 20, são apresentados resultados de distribuição de dano para diferentes agrupamentos de alturas de onda.



Fig. 20 Distribuição do dano para diferentes agrupamentos de alturas de onda.

As barras de cor vermelha na Figura 20 representam o agrupamento de altura de onda de 0,5 em 0,5 metros, sendo este agrupamento o de maior refinamento quanto à identificação dos danos. Um menor agrupamento de alturas de ondas para as faixas de alturas mais elevadas (conforme representado pelas barras nas cores verde e azul a partir de 6 metros) acarreta em uma distribuição de dano bem divergente, se comparada à distribuição dada pelas barras vermelhas.

As Tabelas 20, 21 e 22 apresentam a distribuição do dano para os três diferentes agrupamentos de altura de onda em ordem do maior refinamento para o menor refinamento (Grupo 1, Grupo 2 e Grupo 3), demonstrados na Figura 20.

| Hs – Altura d | le onda | MHs –<br>Altura<br>Média<br>por<br>Faixa | Ciclos     | Fator de<br>Altura | Dano Relativo<br>(%) |
|---------------|---------|------------------------------------------|------------|--------------------|----------------------|
| 0             | 0,5     | 0,25                                     | 10.485     | 0,05               | 0,00                 |
| 0,5           | 1       | 0,75                                     | 2.112.497  | 0,10               | 0,01                 |
| 1             | 1,5     | 1,25                                     | 16.609.558 | 0,15               | 0,66                 |
| 1,5           | 2       | 1,75                                     | 33.033.103 | 0,20               | 5,52                 |
| 2             | 2,5     | 2,25                                     | 23.627.780 | 0,24               | 12,05                |
| 2,5           | 3       | 2,75                                     | 11.854.369 | 0,29               | 15,04                |
| 3             | 3,5     | 3,25                                     | 5.067.862  | 0,34               | 13,90                |
| 3,5           | 4       | 3,75                                     | 1.929.531  | 0,39               | 10,32                |
| 4             | 4,5     | 4,25                                     | 783.871    | 0,44               | 7,55                 |
| 4,5           | 5       | 4,75                                     | 376.851    | 0,49               | 6,15                 |
| 5             | 5,5     | 5,25                                     | 208.182    | 0,54               | 5,47                 |

Tabela 20 Fator de altura de onda para o Grupo 1.

| Hs – Altura d | e onda | MHs –<br>Altura<br>Média<br>por<br>Faixa | Ciclos  | Fator de<br>Altura | Dano Relativo<br>(%) |
|---------------|--------|------------------------------------------|---------|--------------------|----------------------|
| 5,5           | 6      | 5,75                                     | 116.452 | 0,59               | 4,73                 |
| 6             | 6,5    | 6,25                                     | 61.714  | 0,63               | 3,74                 |
| 6,5           | 7      | 6,75                                     | 35.129  | 0,68               | 3,08                 |
| 7             | 7,5    | 7,25                                     | 26.122  | 0,73               | 3,24                 |
| 7,5           | 8      | 7,75                                     | 9.496   | 0,78               | 1,63                 |
| 8             | 8,5    | 8,25                                     | 7.795   | 0,83               | 1,81                 |
| 8,5           | 9      | 8,75                                     | 9.982   | 0,88               | 3,08                 |
| 9             | 9,5    | 9,25                                     | 3.354   | 0,93               | 1,36                 |
| 9,5           | 10     | 9,75                                     | 1.274   | 0,98               | 0,67                 |
| 10            | 10,25  | 10,125                                   | 1       | 1,00               | 0,00                 |

Tabela 21 Fator de altura de onda para o Grupo 2.

| Hs – Altura de ond | a     | MHs –<br>Altura<br>Média<br>por Faixa | Ciclos     | Fator<br>de<br>Altura | Dano Relativo<br>(%) |
|--------------------|-------|---------------------------------------|------------|-----------------------|----------------------|
| 0                  | 2,0   | 1,0                                   | 49.911.401 | 0,20                  | 7,0                  |
| 2,0                | 2,5   | 2,25                                  | 22.781.434 | 0,24                  | 9,8                  |
| 2,5                | 3,0   | 2,75                                  | 11.429.746 | 0,29                  | 12,3                 |
| 3,0                | 3,5   | 3,25                                  | 4.886.331  | 0,34                  | 11,3                 |
| 3,5                | 4,0   | 3,75                                  | 1.860.415  | 0,39                  | 8,4                  |
| 4,0                | 4,5   | 4,25                                  | 755.793    | 0,44                  | 6,2                  |
| 4,5                | 5,0   | 4,75                                  | 363.352    | 0,49                  | 5,0                  |
| 5,0                | 6,0   | 5,5                                   | 313.006    | 0,59                  | 10,7                 |
| 6,0                | 8,0   | 7,0                                   | 127.717    | 0,78                  | 18,5                 |
| 8,0                | 10,25 | 9,12                                  | 21.603     | 1,00                  | 10,8                 |

Tabela 22 Fator de altura de onda para o Grupo 3.

| Hs – Altura de onda |       | MHs –<br>Altura<br>Média<br>por Faixa | Ciclos     | Fator<br>de<br>Altura | Dano<br>Relativo<br>(%) |
|---------------------|-------|---------------------------------------|------------|-----------------------|-------------------------|
| 0                   | 2,0   | 1,0                                   | 49.911.401 | 0,20                  | 6,8                     |
| 2,0                 | 2,5   | 2,25                                  | 22.781.434 | 0,24                  | 9,4                     |
| 2,5                 | 3,0   | 2,75                                  | 11.429.746 | 0,29                  | 11,8                    |
| 3,0                 | 3,5   | 3,25                                  | 4.886.331  | 0,34                  | 10,9                    |
| 3,5                 | 4,0   | 3,75                                  | 1.860.415  | 0,39                  | 8,1                     |
| 4                   | 5,0   | 4,5                                   | 1.119.145  | 0,49                  | 14,8                    |
| 5                   | 6,0   | 5,5                                   | 313.006    | 0,59                  | 10,3                    |
| 6                   | 8,0   | 7,0                                   | 127.717    | 0,78                  | 17,7                    |
| 8                   | 10,25 | 9,12                                  | 21.603     | 1,00                  | 10,3                    |

A Figura 21 demonstra o dano total obtido para cada um dos três agrupamentos informados anteriormente para a curva F3 da norma DNV RP C203. Observa-se que, de acordo com o grau de refinamento do agrupamento das alturas de ondas, os resultados obtidos de dano são mais precisos. O Grupo 1 representa o agrupamento mais refinado (de 0,5 em 0,5 metros), enquanto o Grupo 3 representa o agrupamento menos refinado. A variação do dano total encontrada entre estes dois agrupamentos é de 0,12 para uma variação de tensão de 80 MPa.



Fig. 21 Dano total para três diferentes agrupamentos de alturas de onda para a curva F3 da DNV RP C203, em função da tensão produzida pela onda centenária.

Para a curva D da norma DNV RP C203, a variação é menos significativa conforme demonstra a Figura 22 para os mesmos agrupamentos considerados no estudo anterior.



Fig. 22 Dano total para três diferentes agrupamentos para a curva D da DNV RP C203.

A Figura 23 demonstra um comparativo do dano previsto pelas curvas F3 e D em função da variação de tensão para o agrupamento mais refinado representado pelo Grupo 1 (de 0,5 em 0,5 metros).



Fig. 23 Comparativo de dano total entre a curva F3 e D da DNV RP C203 para agrupamento de altura de onda de 0,5 em 0,5 metros.

É notório que o acréscimo da quantidade de faixas de altura de ondas implica diretamente na quantidade de casos de carregamento a ser considerado na análise de flexibilidade, o que não é tão desejável. Entretanto, a obtenção de um resultado de dano superdimensionado, implicando em uma desnecessária alteração de arranjo da tubulação e, consequentemente, maiores custos e horas de projeto, bem como material e acréscimo de peso, é ainda menos desejável.

A partir dos estudos apresentados nesta seção, será proposto um agrupamento de alturas de ondas no Capítulo VI desta dissertação.

#### 3.1.4 Tensões devido ao armazenamento e descarregamento da plataforma

Conforme informado no capítulo II desta dissertação, de acordo com o guia ABS Spectral-Based Fatigue Analysis for FPSO Installations (2018), plataformas offshore estão submetidas a fontes de carregamentos cíclicos que são as operações de carga e descarga frequentes do óleo produzido para navios chamados aliviadores. Estas variações de carregamento podem induzir grandes faixas de tensão na viga navio e tensão secundária.

Apesar disto, concluiu-se que, devido à pouca repetibilidade destas operações, sendo de aproximadamente 10 ciclos por mês para as unidades de mais intensa produção localizadas nos campos do pré-sal, totalizando ao longo de toda a vida útil da plataforma a quantidade de 2400 ciclos, e, principalmente, devido à dificuldade de obtenção das informações do comportamento da viga navio para estas operações, esta fonte de fadiga não foi contemplada nos casos de carregamento da proposta de procedimento padrão de análise de fadiga, apresentada no Capítulo VI desta dissertação.

Entretanto, é importante uma investigação da disciplina de Naval nesse sentido para que esta fonte possa ser considerada no estudo de fadiga das tubulações *offshore*, obtendo desta forma, resultados mais precisos de dano por fadiga, com a possibilidade de redução de determinados conservadorismos contidos nos procedimentos de projeto, já que uma avaliação ainda mais detalhada está sendo executada.

# **CAPÍTULO IV**

# 4.1 NOVOS FATORES DE FLEXIBILIDADE E INTENSIFICAÇÃO DE TENSÃO DA ASME B31.J

Para a avaliação das tensões e consideração da flexibilidade de acessórios de tubulações, tais como curvas e derivações, por exemplo, são considerados os fatores intensificadores de tensão e flexibilidade especificados pelos códigos de projeto. Os fatores intensificadores de tensão são denominados pela abreviatura "SIF" (s*tress intensification factor*), enquanto que os fatores de flexibilidade são denominados pela letra "k" (*flexibility factor*). A análise de sistemas de tubulações possui uma limitação da relação D/t, que deve ser respeitada conforme a seguir:

$$\frac{D}{t} \le 100 \tag{EQ25}$$

onde:

D-diâmetro do tubo;

t – espessura da parede do tubo.

Para relações maiores que esta, os fatores de intensificação de tensão e flexibilidade não são validados pelos códigos, sendo assim, é necessária uma análise mais refinada através de elementos finitos para a obtenção de resultados confiáveis. Entretanto, para projetos de unidades *offshore*, a relação D/t  $\leq$  100 dificilmente é superada.

A norma ASME B31.J publicada em 2017 traz uma revisão dos cálculos dos fatores intensificadores de tensões e de flexibilidade, com base em novos experimentos, os quais podem apresentar diferenças significativas em relação aos fatores do apêndice D da ASME B31.3.

Para acessórios tipo curva, não há alteração dos fatores de flexibilidade e intensificadores de tensão entre as normas ASME B31.3 e ASME B31.J, conforme pode ser observado na comparação entre as Figuras 24 e 25.

|                                                    | Flexibility      | Stress Inter<br>Factor [Not  | nsification<br>es (1), (2)] | Flexibility                     |                  |
|----------------------------------------------------|------------------|------------------------------|-----------------------------|---------------------------------|------------------|
| Description                                        | Factor,<br>k     | Out-of-Plane,<br><i>i</i> _o | In-Plane,<br>i <sub>i</sub> | Characteristic,<br>h            | Sketch           |
| Welding elbow or pipe bend<br>[Notes (1), (3)–(6)] | $\frac{1.65}{h}$ | $\frac{0.75}{h^{2/3}}$       | $\frac{0.9}{h^{2/3}}$       | $\frac{\overline{TR_1}}{r_2^2}$ | $\overline{r_2}$ |

Fig. 24 Equações para obtenção dos fatores intensificadores de tensão e flexibilidade de uma curva forjada (ASME B31.3, 2018). Fonte: (S/D).



Fig. 25 Equações para obtenção dos fatores intensificadores de tensão e flexibilidade de uma curva forjada. Fonte: (ASME B31.J, 2017).

A orientação dos planos para as duas normas é igual e disposta para a curva conforme a Figura 26.



Fig. 26 Orientação dos planos para a curva. Fonte: (ASME B31.3, 2018).

A equação do SIF no plano (i<sub>i</sub>) e SIF fora do plano (i<sub>o</sub>) da ASME B31.J demonstrada na Figura 4.2 foi publicada de maneira incorreta. Este equívoco pôde ser constatado a partir do gráfico que relaciona estes fatores com o parâmetro "h" (flexibilidade característica) da conexão, conforme demonstrado na Figura 27.



Figure 1-4 Flexibility and Stress Intensification Factors for Bends and Miters

Fig. 27 Gráfico dos fatores intensificadores de tensões e flexibilidade. Fonte: (ASME B31.3, 2018).

Para fins de demonstração, é apresentado a seguir um comparativo de cálculo de fatores de flexibilidade e intensificação de tensões para a conexão do tipo "tê" forjado conforme a norma de fabricação ASME B16.9, segundo o apêndice D da ASME B31.3, e, segundo os novos fatores da norma ASME B31J. As dimensões da conexão estão informadas na Tabela 23.

| Tabela | 23 | Dimensional | da | conexão. |
|--------|----|-------------|----|----------|
|        |    |             |    |          |

| Linha     | Diâmetro | Espessura |
|-----------|----------|-----------|
| Tronco    | 10"      | 9,27 mm   |
| Derivação | 10"      | 9,27 mm   |

De acordo com as Figuras 28 e 29, verifica-se a diferente abordagem trazida pelas duas normas em relação aos fatores da conexão tomada de exemplo. A ASME B31.3 não faz distinção entre o tramo da linha tronco e da derivação. Entretanto, a nota (b) desta mesma norma faz uma ressalva de que, para cálculo dos fatores da derivação, a norma ASME B31.J deverá ser consultada.

83

|                                                                                                              | Flexibility            | Stress Intensification<br>Flexibility Factor [Notes (1), (2)] |                                                                                 |                                                                   |                                                                                    |
|--------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Description                                                                                                  | Factor,<br>k           | Out-of-Plane,<br>i <sub>o</sub>                               | In-Plane,<br>i <sub>i</sub>                                                     | Characteristic,<br>h                                              | Sketch                                                                             |
| Welding elbow or pipe bend<br>[Notes (1), (3)-(6)]                                                           | $\frac{1.65}{h}$       | $\frac{0.75}{h^{2/3}}$                                        | $\frac{0.9}{h^{2/3}}$                                                           | $\frac{\overline{TR_1}}{r_2^2}$                                   | $\overline{R_1} = \frac{\overline{r}}{r_2}$                                        |
| Closely spaced miter bend<br>$s < r_2 (1 + \tan \theta)$<br>[Notes (1), (3), (4), (6)]                       | $\frac{1.52}{h^{5/6}}$ | $\frac{0.9}{h^{2/3}}$                                         | $\frac{0.9}{h^{2/3}}$                                                           | $\frac{\cot\theta}{2} \left( \frac{s\overline{T}}{r_2^2} \right)$ | $B_{R_1} = \frac{S_1}{2}$                                                          |
| Single miter bend or widely<br>spaced miter bend<br>$s \ge r_2$ (1 + tan $\theta$ )<br>[Notes (1), (3), (6)] | $\frac{1.52}{h^{5/6}}$ | $\frac{0.9}{h^{2/3}}$                                         | $\frac{0.9}{h^{2/3}}$                                                           | $\frac{1+\cot\theta}{2}\left(\frac{\overline{T}}{r_2}\right)$     | $\frac{s}{\theta} = \frac{r_2 \left(1\right)}{R_1} = \frac{r_2 \left(1\right)}{2}$ |
| Welding tee in accordance<br>with ASME B16.9<br>[Notes (1), (3), (5), (7), (8)]                              | 1                      | $\frac{0.9}{h^{2/3}}$                                         | <sup>3</sup> / <sub>4</sub> <i>i</i> <sub>o</sub> + <sup>1</sup> / <sub>4</sub> | $3.1\frac{\overline{T}}{r_2}$                                     |                                                                                    |

Fig. 28 Equações para determinação dos fatores intensificadores de tensões e flexibilidade (ASME B31.3, 2018).

| Table 1-1 Flexibility and Stress Intensification Factors (Cont'd) |                                                                              |                                                              |  |  |  |  |  |  |
|-------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|--|--|
| Term                                                              | Equation                                                                     | Sketch                                                       |  |  |  |  |  |  |
| 2.1 Welding Tee Meeting ASME B16.9 [Notes                         | (1), (6), (7)]                                                               |                                                              |  |  |  |  |  |  |
| Run in-plane flexibility factor, $k_{tr}$                         | $0.18(R/T)^{0.8}(d/D)^{5}$                                                   |                                                              |  |  |  |  |  |  |
| Run out-of-plane flexibility factor, k <sub>or</sub>              | 1                                                                            | <u>*</u> _                                                   |  |  |  |  |  |  |
| Run torsional flexibility factor, k <sub>tr</sub>                 | $0.08(R/T)^{0.91} (d/D)^{5.7}$                                               | $T_{c} \rightarrow R$                                        |  |  |  |  |  |  |
|                                                                   |                                                                              |                                                              |  |  |  |  |  |  |
| Branch in-plane flexibility factor, $k_{tb}$                      | $[1.91(d/D) - 4.32(d/D)^{2} + 2.7(d/D)^{3}](R/T)^{0.77} (d/D)^{0.47} (t/T)$  | d = 2r                                                       |  |  |  |  |  |  |
| Branch out-of-plane flexibility factor, $k_{ob}$                  | $[0.34(d/D) - 0.49(d/D)^2 + 0.18(d/D)^3](R/T)^{1.46}(t/T)$                   | $\rightarrow r \leftarrow D = 2R$                            |  |  |  |  |  |  |
| Branch torsional flexibility factor, $k_{tb}$                     | $[1.08(d/D) - 2.44(d/D)^{2} + 1.52(d/D)^{8}](R/T)^{0.77} (d/D)^{1.61} (t/T)$ |                                                              |  |  |  |  |  |  |
| Due CID in plane i                                                | 0 00 (D / T) 0.35 (J / D) 0.72 (L / T) = 0.52                                |                                                              |  |  |  |  |  |  |
| Run SIF in plane, l <sub>tr</sub>                                 | $0.96[R/1]^{-10} (a/D)^{-10} (t/1)^{-10}$                                    |                                                              |  |  |  |  |  |  |
| Run SIF out of plane, lor                                         | $0.61(R/T)^{0.25}(a/D)^{2.55}(t/T)^{0.25}$                                   | $\Gamma$                                                     |  |  |  |  |  |  |
| Run SIF torsional, i <sub>tr</sub>                                | $0.34(R/T)^{2/5}(d/D)(t/T)^{-0.5}$                                           |                                                              |  |  |  |  |  |  |
|                                                                   |                                                                              | $\mathbf{V} = \mathbf{V} \mathbf{K} \mathbf{r}_{\mathbf{x}}$ |  |  |  |  |  |  |
| Branch SIF in plane, i <sub>tb</sub>                              | $0.33(R/T)^{2/3}(d/D)^{0.18}(t/T)^{0.7}$                                     |                                                              |  |  |  |  |  |  |
| Branch SIF out of plane, iob                                      | $0.42(R/T)^{2/3}(d/D)^{0.37}(t/T)^{0.37}$                                    | $r \leftarrow D = 2B$                                        |  |  |  |  |  |  |
| Branch SIF torsional, itb                                         | $0.42(R/T)^{2/3} (d/D)^{1.1} (t/T)^{1.1}$                                    | 0-20                                                         |  |  |  |  |  |  |

# Fig. 29 Equações para determinação dos fatores intensificadores de tensões e flexibilidade. Fonte: (ASME B31.J, 2017).

De acordo com o a Figura 30 verifica-se os fatores encontrados baseados em cada norma e suas variações.



Fig. 30 Comparativo - Fatores intensificadores de tensões e flexibilidade (ASME B31.J x ASME B31.3).

Observa-se que para o componente avaliado, há uma alteração de resultados, tanto para o fator flexibilidade, quanto para o fator intensificador de tensões. Importante ressaltar que esta variação irá influenciar em maiores ou menores níveis de tensões nos sistemas de tubulações, o que consequentemente irá implicar em maiores ou menores danos devido ao processo de fadiga.

Segundo a ASME B31.3 (2018), o calculista pode usar os fatores de intensificação de tensão e os fatores de flexibilidade mais aplicáveis da norma ASME B31J em vez dos fatores mencionados no apêndice D da ASME B31.3 (2018), sendo incentivado a fazê-lo quando:

> 
$$S_F > 0, 5 S_A;$$

ciclos significativos de tensão estiverem presentes no sistema avaliado.

Lembrando que:

$$S_F = S \cdot E \cdot W \tag{EQ26}$$

onde:

S-tensão atuante;

E – fator de qualidade da junta soldada retirada da Tabela 2 ou 3 da ASME B31.3;

W – eficiência da junta conforme descrito no parágrafo 302.3.2 da ASME B31.3.

Este assunto está diretamente relacionado aos resultados do processo de fadiga presentes na tubulação. Um estudo de caso que aborda esta questão foi elaborado e é apresentado no Capítulo VI desta dissertação.

A fim de simplificar o retrabalho, a empresa detentora do software CAESAR II disponibiliza uma ferramenta que executa a conversão de todos os fatores intensificadores de tensão e de flexibilidade dados pelas normas ASME B31.3 e ASME B31J.

#### CAPÍTULO V

# 5.1. ESTUDOS DE CASOS DE PROJETOS À FADIGA DE TUBULAÇÕES OFFSHORE

Este capítulo tem como objetivos estudar detalhadamente os procedimentos de projeto à fadiga adotados por diferentes projetistas de tubulações, identificar a contribuição dos diferentes esforços no dano por fadiga de tubulações, bem como estudar os efeitos dos deslocamentos e acelerações do FPSO em sistemas de tubulações com diferentes configurações de *suportação* e arranjo. Também foram avaliados os resultados do emprego dos novos fatores intensificadores de tensões e flexibilidade da ASME B31.J. Com base nos estudos de caso apresentados neste capítulo, serão propostos procedimentos de projeto com o objetivo de reduzir as tensões devido às acelerações e deslocamentos do FPSO. Os estudos realizados também contribuíram para definição dos casos de carregamento padrão para determinação do dano por fadiga. Deve-se ressaltar que os resultados apresentados neste capítulo foram obtidos através de procedimentos e casos de carregamento aplicados por diferentes projetistas na execução do projeto de variados sistemas de tubulações.

#### 5.1.1 Estudo de Caso 1

Este estudo de caso foi dividido em dois sistemas de tubulações, uma vez que trata de tubulações com características semelhantes, mas de diâmetros bem diferentes, onde uma série de comparações é realizada a fim de confrontar os resultados obtidos.

#### 5.1.1.1 Linha do Flare (30") ao longo do pipe rack

Este estudo de caso busca identificar isoladamente a magnitude das tensões provenientes das acelerações e dos deslocamentos geradas em sistemas de tubulações *offshore* de projetos de plataformas já executados. Para esta avaliação, foram selecionados arranjos mais solicitados quanto aos deslocamentos do navio e acelerações, percorrendo grandes extensões ao longo do *pipe rack*. A Figura 5.1 mostra o *header* de 30" de diâmetro, fabricado em aço inox A358 316L, com 7,92 mm de espessura de parede, e comprimento de 90 metros, responsável pelo sistema de *flare* da plataforma, ou seja, linha de envio para a queima de todos os gases eliminados em situações de anomalias. Os eixos x, y e z correspondem respectivamente às direções transversal (bombordo – boreste), vertical e longitudinal (popa-proa) do FPSO.

Importante ressaltar que este estudo de caso contempla somente um trecho da linha que se extende ao longo de toda a plataforma.



Fig. 31 Arranjo geral da linha do flare extraído do software CAESAR II – Tubulação de 30". Fonte: (S/D).

Por ser um sistema de *flare*, a linha possui variação de temperatura de projeto da ordem de 310°C, sendo 210°C a temperatura máxima e -100°C de temperatura mínima. Em compensação a classe de pressão é de 150 libras.

A Tabela 24 apresenta os dados de acelerações contidos no *Acceleration Data* para a área/módulo no(s) qual(is) a linha objeto deste estudo se encontra, neste caso, o M-19 que corresponde ao *pipe rack* do FPSO. São informadas as magnitudes das acelerações de *roll, pitch* e *heave* da plataforma em termos da aceleração da gravidade.

| CONDICÃO | ACELERAÇÃO |        |       |  |  |
|----------|------------|--------|-------|--|--|
| CONDIÇÃO | X (g)      | Y (g)  | Z (g) |  |  |
| DOC      | 0,200      | -0,170 | 0,075 |  |  |
| DEC      | 0,385      | -0,300 | 0,119 |  |  |

Tabela 24 Acelerações inerciais para o pipe rack em DOC e DEC.

Em geral, a aplicação das acelerações no *software* de análise de flexibilidade ocorre através de vetores U1, U2 e U3, conforme visto no Capítulo III. Entretanto, neste projeto executado, os dados de acelerações foram aplicados pelos projetistas através do vetor U1 que

corresponde à composição das acelerações nos eixos X e Y, e do vetor U2 que corresponde à composição das acelerações nos eixos Y e Z, conforme a Tabela 25.

| EIXO  | VETOR<br>U1<br>(DOC) | VETOR<br>U2<br>(DOC) | VETOR<br>U1<br>(DEC) | VETOR<br>U2<br>(DEC) |
|-------|----------------------|----------------------|----------------------|----------------------|
| X (g) | 0,200                | -                    | 0,385                | -                    |
| Y (g) | -0,170               | -0,170               | -0,300               | -0,300               |
| Z (g) | -                    | 0,075                | -                    | 0,119                |

Tabela 25 Composição de acelerações (DOC/DEC).

A íntegra dos casos de carregamento utilizados no projeto executado está apresentada no Apêndice 11.1.1 desta dissertação. Serão aqui comentados somente os casos de carregamento relacionados com os cálculos de dano por fadiga. No que se refere à avaliação da fadiga, foram aplicados fatores em sete faixas de altura de onda somente para os deslocamentos estruturais do FPSO. Os casos de carregamentos do projeto executado correspondentes a cada faixa de altura estão informados na última coluna da Tabela 26. Os casos de carregamentos indicados na última coluna correspondem aos casos de carregamento do Apêndice 11.1.1. A curva de fadiga considerada na análise foi a F3 da norma DNV RP C203.

| FATORES DE ALTURAS CONSIDERADOS NO PROJETO |                           |                              |      |                                           |                           |  |  |
|--------------------------------------------|---------------------------|------------------------------|------|-------------------------------------------|---------------------------|--|--|
| FAIXA                                      | ALTURA<br>DE ONDA<br>MÍN. | ALTURA<br>DE<br>ONDA<br>MÁX. | MHs  | <b>FATOR</b><br><u>MHs</u><br><u>9,75</u> | CASOS DE<br>CARREGAMENTOS |  |  |
| 1                                          | 0,25                      | 0,75                         | 0,75 | 0,077                                     | L176@L183                 |  |  |
| 2                                          | 1,25                      | 1,75                         | 1,75 | 0,179                                     | L184@L191                 |  |  |
| 3                                          | 2,25                      | 2,75                         | 2,75 | 0,282                                     | L192@L199                 |  |  |
| 4                                          | 3,25                      | 3,75                         | 3,75 | 0,385                                     | L200@L207                 |  |  |
| 5                                          | 4,25                      | 4,75                         | 4,75 | 0,487                                     | L208@L215                 |  |  |
| 6                                          | 5,25                      | 5,75                         | 5,75 | 0,590                                     | L216@L223                 |  |  |
| 7                                          | 6,25                      | 9,75                         | 9,75 | 1,000                                     | L224@L231                 |  |  |

Tabela 26 - Determinação dos fatores de altura de onda considerados no projeto executado.

As acelerações consideradas foram somente para a condição DOC (*Design Operation Condition*). Além disso, foi adotada a premissa de que os deslocamentos de HOG correspondem a 50% dos deslocamentos de SAG, a qual pode ser confirmada na linha L13 dos casos de carregamentos utilizados no projeto executado, e apresentados no Apêndice 11.1.1 desta dissertação.

Com o objetivo de identificar as tensões isoladamente devido às acelerações e deslocamentos, bem como obter o dano devido somente aos deslocamentos estruturais para

cada faixa de altura de onda, conforme será apresentado na Tabela 31, os casos de carregamentos do projeto executado foram editados de acordo com a Tabela 27.

Tabela 27 Casos de carregamentos editados para determinação das tensões devido às acelerações e deslocamento isoladamente e dano devido somente aos deslocamentos estruturais – Dano à fadiga (Flare).

| CASO DE<br>CARREGAMENTO | COMBINAÇÃO | TIPO | N°<br>CICLOS | DESCRIÇÃO                                    |
|-------------------------|------------|------|--------------|----------------------------------------------|
| L9                      | U1         | SUS  | -            | VETOR ACELERAÇÃO<br>1                        |
| L10                     | U2         | SUS  | -            | VETOR ACELERAÇÃO<br>2                        |
| L13                     | D2         | EXP  | -            | DESLOCAMENTO<br>ESTRUTURAL PARA<br>SAG E HOG |
| L165                    | MÁX. EXP   | EXP  | -            | MÁXIMA EXPANSÃO<br>TÉRMICA                   |
| L167                    | 0.53L13    | EXP  | -            | FAIXAS DE ALTURA                             |
| L168                    | 0.077L167  | EXP  | -            | DE ONDA                                      |
| L169                    | 0.179L167  | EXP  | -            |                                              |
| L170                    | 0.282L167  | EXP  | -            |                                              |
| L171                    | 0.385L167  | EXP  | -            |                                              |
| L172                    | 0.487L167  | EXP  | -            |                                              |
| L173                    | 0.59L167   | EXP  | -            |                                              |
| L174                    | L165       | FAT  | 7000         | CICLOS TÉRMICOS                              |
| L175                    | L168       | FAT  | 2046936      | CASOS DE FADIGA                              |
| L176                    | L169       | FAT  | 47864464     | PARA DETERMINAÇÃO                            |
| L177                    | L170       | FAT  | 34211180     | DO DANO SOMENTE                              |
| L178                    | L171       | FAT  | 6746746      | PARA OS                                      |
| L179                    | L172       | FAT  | 1119145      | DESLOCAMENTOS                                |
| L180                    | L173       | FAT  | 313006       | ESTRUTURAIS                                  |
| L181                    | L167       | FAT  | 149319       |                                              |
| L182                    | L9         | FAT  | 23112700     | CASOS DE FADIGA                              |
| L183                    | -L9        | FAT  | 23112700     | PARA DETERMINAÇÃO                            |
| L184                    | L10        | FAT  | 23112700     | DO DANO SOMENTE                              |
| L185                    | -L10       | FAT  | 23112700     | PARA ACELERAÇÕES                             |

A Tabela 28, indica os níveis de tensões determinadas para cada fonte de fadiga. A última coluna desta tabela faz referência ao caso de carregamento da Tabela 27, considerado para obtenção do resultado encontrado.

| FONTE DE FADIGA |         | TENSÃO<br>(MPa) | NÓ    | CASO DE<br>CARREGAMENTO |
|-----------------|---------|-----------------|-------|-------------------------|
| ACELERAÇÕES     | U1      | 15,6            | 17640 | L247/L248               |
|                 | U2      | 1,0             | 17040 | L249/L250               |
| DESLOCAMENTOS   | FAIXA 1 | 6,0             | 17640 | L240                    |

Tabela 28 - Tensões devido às acelerações e deslocamentos (Flare).

| FONTE DE FADIGA |         | TENSÃO<br>(MPa) | NÓ | CASO DE<br>CARREGAMENTO |
|-----------------|---------|-----------------|----|-------------------------|
|                 | FAIXA 2 | 13,9            |    | L241                    |
|                 | FAIXA 3 | 21,9            |    | L242                    |
|                 | FAIXA 4 | 29,9            |    | L243                    |
|                 | FAIXA 5 | 37,8            |    | L244                    |
|                 | FAIXA 6 | 45,9            |    | L245                    |
|                 | FAIXA 7 | 77,7            |    | L246                    |

As Figuras 32, 33 e 34 apresentam os pontos nodais mais solicitados quanto às tensões identificadas na Tabela 5.5. O ponto de maior tensão para aceleração, devido principalmente ao movimento de *roll* acontece no nó 17680, em suporte de restrição lateral (tipo guia), nas proximidades do trecho menos restringido lateralmente devido à existência do *looping*, implementado para absorver os deslocamentos axiais ocorridos durante a expansão e contração da tubulação nas temperaturas de 210°C e -110°C consideradas no projeto. As tensões no nó 17680, causadas pelas acelerações provenientes do movimento de *roll*, são devido a grande inércia do longo trecho de tubulação que compreende o *looping*, que não possui restrição lateral para não reduzir a flexibilidade da tubulação.



Fig. 32 Destaque para o nó 17680 de maior tensionamento da tubulação para o movimento de *roll* extraído do software CAESAR II – Tubulação de 30" - *Flare*. Fonte: (S/D).

O nó de maior tensão devido à aceleração *pitch*, ocorre na derivação da conexão tipo tê forjado de 30" x 30". Isso se deve ao fato desta derivação se interligar perpendicularmente ao

*header* do *flare*, e estar posicionada a aproximadamente 80 metros da linha média do FPSO. Quanto maior a distância do centro do navio, maior a contribuição da aceleração, neste caso específico, devido principalmente ao movimento de *pitch* e *heave*.



Fig. 33 Destaque para o nó 17210 de maior tensão da tubulação para o movimento de pitch extraído do software CAESAR II – Tubulação de 30" - Flare. Fonte: (S/D).

A Figura 34 indica a distância aproximada do ponto da derivação, representada pelo nó 17210 na Figura 33, em relação à linha média do navio.



Fig. 34 Cota entre o ponto de derivação da linha do flare e a linha média do navio. Fonte: (S/D).

Para os deslocamentos considerados na análise, o ponto mais solicitado foi a curva do *looping*, considerado no arranjo devido ao fato de estar localizada próximo de trecho com orientações em mais de um eixo, e que nas proximidades há ausência de guias. Entretanto, é importante ressaltar que a ausência de guias ocorre devido à necessidade de não limitação dos deslocamentos da tubulação, uma vez que possui considerável diâmetro e pequeno *offset* (que corresponde ao trecho ortogonal da curva de expansão - *looping*).



Fig. 35 Destaque para o nó 17450 de maior tensão da tubulação para os deslocamentos estruturais extraído do software CAESAR II – Tubulação de 30" - Flare. Fonte: (S/D).

De acordo com a simulação no *software*, o dano acumulado para as fontes de aceleração e deslocamento encontrado foi de 2,95, tendo ocorrido no nó 17450, conforme identificado na Figura 5.5. As distribuições do dano devido aos deslocamentos para as várias faixas de altura de onda encontram-se apresentadas na Tabela 30.

Importante registrar que neste estudo, a linha do *flare* foi considerada isoladamente. Sendo assim, os valores de danos encontrados neste estudo não representam o dano real determinado no projeto executado, uma vez que a tubulação apresentada possui uma variedade de linhas conectadas que irão influenciar na sua rigidez e no seu comportamento à fadiga. Entretanto, os resultados são válidos no sentido de identificar as maiores influências do processo de fadiga.

# 5.1.1.2 Linha de 4" ao longo do pipe rack

A fim de confrontar os resultados obtidos na seção anterior, novo estudo foi realizado para uma tubulação que também transporta gás com extensão aproximada a da linha do *flare* analisada anteriormente ao longo de todo o *pipe rack*, porém com diâmetro nominal de 4", fabricada em aço carbono API 5L Grau B, com espessura de 6,02 mm, e comprimento de 125

metros. Os casos de carregamento considerados nesta análise (projeto executado e editado), todas as premissas de projeto, bem como a curva de fadiga considerada, são idênticas às do exemplo anterior. A linha possui temperatura de projeto de 70°C e classe de pressão de 150 libras.



Fig. 36 Arranjo geral da análise extraído do software CAESAR II – Tubulação de 4". Fonte: (S/D).

As tensões identificadas isoladamente para as acelerações e deslocamentos estão informadas na Tabela 29. Os casos de carregamentos indicados na última coluna correspondem aos da Tabela 27.

| FONTE DE FADIGA |                | TENSÃO (Mpa) | NÓ   | CASO DE<br>CARREGAMENTO |           |
|-----------------|----------------|--------------|------|-------------------------|-----------|
|                 | A CELED A CÕES | U1           | 9,1  | 2520                    | L247/L248 |
|                 | ACELEKAÇUES    | U2           | 4,0  | 2330                    | L249/L250 |
|                 |                | FAIXA 1      | 4,0  |                         | L240      |
|                 |                | FAIXA 2      | 9,2  |                         | L241      |
|                 |                | FAIXA 3      | 14,5 |                         | L242      |
|                 | DESLOCAMENTOS  | FAIXA 4      | 19,9 | 2525                    | L243      |
|                 |                | FAIXA 5      | 25,2 |                         | L244      |
|                 |                | FAIXA 6      | 30,5 |                         | L245      |
|                 |                | FAIXA 7      | 51,6 |                         | L246      |

Tabela 29 Separação das tensões entre acelerações e deslocamentos (Linha 4").

Assim como acontece no sistema de *flare* analisado anteriormente, as maiores tensões são encontradas próximo dos trechos desprovidos de guias, como ocorre novamente para o *looping*, e também nas proximidades de trechos de tubulações dispostos em outras direções.



Fig. 37 Destaque para o nó 2525 e 2530 de maior tensionamento da tubulação para os casos de aceleração e deslocamentos estruturais, respectivamente – Tubulação de 4". Fonte: (S/D).

Observou-se que os dois sistemas de tubulações analisados são mais solicitados para o vetor U1 de aceleração, o qual contempla a aceleração de *roll* do navio, sempre mais intensa do que a de *pitch*.

Além disso, verificou-se que os deslocamentos impostos às tubulações são responsáveis pelas maiores tensões. Como era esperado, observa-se de acordo com as Tabelas 28 e 29, que as tensões possuem maior magnitude quando o sistema é submetido aos deslocamentos gerados pelas maiores alturas de ondas.

Apesar das maiores tensões encontradas para as maiores faixas de altura, a quantidade de repetições destas é menor, o que leva a valores de danos não tão elevados. Na Tabela 30, foi realizado estudo de identificação do dano por faixa de altura de onda considerando as duas fontes de fadiga (aceleração e deslocamentos) combinadas para os dois estudos de caso apresentados anteriormente (linha do *flare* de 30" e linha de 4"). Os casos de carregamentos indicados na última coluna correspondem aos do Apêndice 11.1.2.

| FAIXA | FATOR | Linha | Flare | Linha 4" |       | CASO DE      |
|-------|-------|-------|-------|----------|-------|--------------|
|       |       | DANO  | %     | DANO     | %     | CARREGAMENTO |
| 1     | 0,077 | 0,01  | 0,33  | 0,00     | 0,00  | L176@L183    |
| 2     | 0,179 | 0,53  | 17,96 | 0,05     | 10,86 | L184@L191    |
| 3     | 0,282 | 1,29  | 43,72 | 0,17     | 36,95 | L192@L199    |
| 4     | 0,385 | 0,61  | 20,70 | 0,11     | 23,91 | L200@L207    |
| 5     | 0,487 | 0,20  | 6,78  | 0,05     | 10,87 | L208@L215    |
| 6     | 0,590 | 0,10  | 3,38  | 0,03     | 6,52  | L216@L223    |
| 7     | 1,000 | 0,21  | 7,12  | 0,06     | 13,04 | L224@L231    |
| ТО    | TAL   | 2,95  | -     | 0,46     | -     | -            |

Tabela 30 Separação dos danos por faixa de altura de onda para acelerações e deslocamentos.

A Tabela 31 mostra os resultados de dano por faixa de altura de onda da simulação realizada no CAESAR II, somente para os deslocamentos. Os casos de carregamentos indicados na última coluna correspondem aos da Tabela 27.

| FAIXA | FATOR | Linha | Linha <i>Flare</i> |      | a 4"  | CASOS DE     |
|-------|-------|-------|--------------------|------|-------|--------------|
|       |       | DANO  | %                  | DANO | %     | CARREGAMENTO |
| 1     | 0,077 | 0,00  | 0,00               | 0,00 | 0,00  | L176         |
| 2     | 0,179 | 0,07  | 4,93               | 0,00 | 0,00  | L177         |
| 3     | 0,282 | 0,46  | 32,39              | 0,06 | 26,08 | L178         |
| 4     | 0,385 | 0,43  | 30,28              | 0,06 | 26,08 | L179         |
| 5     | 0,487 | 0,17  | 11,97              | 0,03 | 13,04 | L180         |
| 6     | 0,590 | 0,09  | 6,33               | 0,02 | 8,69  | L181         |
| 7     | 1,000 | 0,20  | 14,08              | 0,06 | 26,08 | L182         |
| ТО    | TAL   | 1,42  | -                  | 0,23 | -     | -            |

Tabela 31 Separação dos danos por faixa de altura de onda somente devido aos deslocamentos.

Nos dois resultados de dano indicados nas Tabelas 30 e 31, o dano máximo encontrado para a linha de 4" acontece no nó 2525, indicado na Figura 37. Para a linha de *flare*, o dano máximo encontrado nas Tabelas 30 e 31 ocorreu no nó 17450, conforme indicado na Figura 35.

Com o objetivo de validar os resultados acima obtidos no CAESAR II, o cálculo do dano foi realizado com base na curva F3 da DNV RP C203. A partir do *range* de tensão ( $\Delta\sigma$ ) encontrado na análise de flexibilidade para a faixa 7 de altura de onda da ordem de 77,7 MPa para o caso do *flare*, conforme apresentado na Tabela 27, é determinada a distribuição dos danos, supondo uma relação linear entre as tensões na tubulação e a altura de onda, conforme exposto no Capítulo 3 desta dissertação, para o mesmo agrupamento considerado na análise, de acordo com a Tabela 32.

| $\mathbf{H}_{n}\left(\mathbf{m} ight)$ | Ciclos<br>N <sub>n</sub> | Fator<br>Altura<br>de<br>Onda | Δσ<br>(MPa) | Ciclos para falha<br>F3<br>N | Dano por<br>H <sub>n</sub><br>N <sub>n</sub> / N | Dano por<br>H <sub>n</sub> (%) |
|----------------------------------------|--------------------------|-------------------------------|-------------|------------------------------|--------------------------------------------------|--------------------------------|
| 0,25 a<br>0,75                         | 2.046.936                | 0,077                         | 5,99        | 48.919.935.906               | 0,00004                                          | 0,0                            |
| 1,25 a<br>1,75                         | 47.864.464               | 0,179                         | 13,92       | 720.566.969                  | 0,06643                                          | 4,7                            |
| 2,25 a<br>2,75                         | 34.211.180               | 0,282                         | 21,93       | 74.249.574                   | 0,46076                                          | 32,5                           |
| 3,25 a<br>3,75                         | 6.746.746                | 0,385                         | 29,94       | 15.654.379                   | 0,43098                                          | 30,4                           |
| 4,25 a<br>4,75                         | 1.119.145                | 0,487                         | 37,87       | 6.471.081                    | 0,17295                                          | 12,2                           |
| 5 a 6                                  | 313.006                  | 0,59                          | 45,88       | 3.639.215                    | 0,08601                                          | 6,1                            |
| 6 a 9,75                               | 149.319                  | 1                             | 77,77       | 747.418                      | 0,19978                                          | 14,1                           |
|                                        |                          |                               |             | TOTAL                        | 1,41694                                          | 100,0                          |

Tabela 32 Cálculo com base na curva F3 para obtenção do dano devido aos deslocamentos – Linha do *flare*.

Na Figura 5.8, são apresentados resultados de distribuição de dano da linha do *flare* calculados diretamente a partir da curva F3 da DNV RP C203, supondo tensões proporcionais às alturas de onda e utilizando a regra de *Palmgren-Miner*, e para os dados obtidos a partir das simulações no CAESAR II. Observa-se que ao longo de todas as alturas de ondas que a distribuição do dano é a mesma para os dois cenários.



Fig. 38 Distribuição do dano para a linha do flare obtidas de acordo com o CAESAR II e calculada a paritr da curva S-N (F3).

Os resultados da Tabela 33 se referem à linha de 4" de diâmetro. O *range* de tensão de 51,6 MPa foi determinado através do *software* de análise de tensões e informado na Tabela 27.

Tabela 33 Cálculo com base na curva F3 para obtenção do dano devido aos deslocamentos – Linha de 4".

| H <sub>n</sub> (m) | Ciclos<br>N <sub>n</sub> | Fator<br>Altura<br>de<br>Onda | Δσ<br>(MPa) | Ciclos para falha<br>F3<br>N | Dano por<br>H <sub>n</sub><br>N <sub>n</sub> / N | Dano por<br>H <sub>n</sub> (%) |
|--------------------|--------------------------|-------------------------------|-------------|------------------------------|--------------------------------------------------|--------------------------------|
| 0,25 a             | 2.046.936                | 0,077                         | 3,97        | 380.450.243.152              | 0,00001                                          | 0,0                            |
| 0,75               |                          |                               |             |                              |                                                  |                                |
| 1,25 a<br>1,75     | 47.864.464               | 0,179                         | 9,24        | 5.603.847.872                | 0,00854                                          | 3,7                            |
| 2,25 a<br>2,75     | 34.211.180               | 0,282                         | 14,55       | 577.438.784                  | 0,05925                                          | 25,4                           |
| 3,25 a<br>3,75     | 6.746.746                | 0,385                         | 19,87       | 121.744.078                  | 0,05542                                          | 23,8                           |
| 4,25 a<br>4,75     | 1.119.145                | 0,487                         | 25,13       | 37.592.974                   | 0,02977                                          | 12,8                           |
| 5 a 6              | 313.006                  | 0,59                          | 30,44       | 14.404.276                   | 0,02173                                          | 9,3                            |
| 6 a 9,75           | 149.319                  | 1                             | 51,6        | 2.558.886                    | 0,05835                                          | 25,0                           |
|                    |                          |                               |             | TOTAL                        | 0,23306                                          | 100,0                          |

Na Figura 39, também são apresentados resultados da distribuição de dano, agora para a linha de 4", calculados com base na equação da curva S-N (F3), e também, para os dados obtidos no CAESAR II.



Fig. 39 Distribuição do dano para a linha de 4" obtidas de acordo com o CAESAR II e curva F3.

# - Estudo do efeito das fontes de dano agindo isoladamente e combinadas:

Ao buscar a determinação do dano de forma isolada para a aceleração e deslocamentos, verificou-se que os resultados da soma dos danos encontrados quando essas fontes são analisadas isoladamente são muito menores do que os resultados dos danos gerados quando estas fontes estão combinadas. Isso se deve à relação exponencial da tensão com o dano por fadiga. A Tabela 34 apresenta os resultados de danos encontrados através da análise de flexibilidade pelo *software* CAESAR II.

| Fonto                   | DANO           |             |  |  |  |
|-------------------------|----------------|-------------|--|--|--|
| ronte                   | Linha do Flare | Linha de 4" |  |  |  |
| Aceleração              | 0,11           | 0,00        |  |  |  |
| Deslocamento            | 1,42           | 0,23        |  |  |  |
| Somatório dos danos     | 1 53           | 0.23        |  |  |  |
| calculados isoladamente | 1,55           | 0,25        |  |  |  |
| Dano acumulado para as  | 2.05           | 0.46        |  |  |  |
| fontes combinadas       | 2,95           | 0,40        |  |  |  |

Tabela 34 Resultados de danos isolados para aceleração e deslocamentos de acordo com o CAESAR II.

Conclui-se que, para os sistemas de tubulações deste estudo de caso, o dano isolado devido aos deslocamentos foi bem mais significativo do que o dano gerado pelas acelerações. Por exemplo, para a linha de 4", o dano isolado encontrado para a fadiga devido ao deslocamento estrutural corresponde à metade do dano acumulado (com fontes de fadiga combinadas). Conclui-se que estes resultados se devem ao fato de ambas as linhas se estenderem por longas distâncias ao longo do FPSO, o que implica em maiores deslocamentos impostos às tubulações. Por outro lado, a suportação adequada da linha evita maiores tensões devido às acelerações.

• Comparativos de tensões para acelerações DOC/DEC:

As simulações realizadas para as linhas do *flare* e de 4" foram atualizadas para a condição de aceleração DEC (*Design Extreme Condition*) a fim de que sejam observadas as relações entre as tensões geradas para cada uma destas condições de análise (DOC e DEC), conforme a Tabela 35. Todas as simulações realizadas até então consideraram somente as acelerações de DOC.

|             | VETOR | TENSAO (MPa) |      | <b>RELACÃO</b> | NO                |
|-------------|-------|--------------|------|----------------|-------------------|
| ANÁLISE     |       | DOC          | DEC  | (%)            | CRÍTICO<br>p/ DEC |
| Linha do    | U1    | 15,6         | 31,3 | 49,84          | 17210             |
| Flare       | U2    | 10,8         | 17,8 | 60,67          | 17210             |
| Linha de 4" | U1    | 9,1          | 17,1 | 53,21          | 2530              |
|             | U2    | 4,0          | 7,0  | 57,14          | 2530              |

Tabela 35 Comparativo de tensões para acelerações DOC e DEC para as linhas do flare e de 4".

Observa-se que a relação média para o resultado de tensões entre as acelerações de DOC e DEC é de aproximadamente 55%.

A Tabela 36 apresenta os resultados de dano para os dois cenários analisados com aceleração de DOC e DEC.

Tabela 36 Comparativo de resultados de dano para acelerações DOC e DEC para as linhas do flare e de 4".

| ANÁTISE                  | DA   | AUMENTO |     |
|--------------------------|------|---------|-----|
| ANALISE                  | DOC  | DEC     | (%) |
| Linha do<br><i>Flare</i> | 2,95 | 8,04    | 173 |
| Linha de 4"              | 0,46 | 1,31    | 185 |

#### 5.1.2 Estudo de Caso 2 – Linha de 12" (Gás)

Assim como nos estudos de casos apresentados até aqui, este também foi realizado com base em uma análise de flexibilidade de determinado projeto já executado, e contempla uma tubulação de 12" de diâmetro nominal, fabricada em aço carbono API 5L Grau B, com espessura de parede de 6,35 mm, e comprimento de, aproximadamente 70 metros, com escoamento de fluido na fase gasosa. A linha possui temperatura de projeto de 90°C e classe de pressão de 150 libras.



Fig. 40 Arranjo geral da análise extraído do software CAESAR II. Fonte: (S/D).

Este estudo de caso aborda as condições de DOC e DEC em um mesmo caso de carregamento, conforme também é proposto no procedimento padrão apresentado no Capítulo VI desta dissertação.

A Tabela 37 a seguir mostra os dados de acelerações contidos no *Acceleration Data* para a área/módulo no(s) qual(is) a linha está presente. Neste caso, o *pipe rack* representado
pelo M-18. São informadas as magnitudes das acelerações de *roll, pitch* e *heave* da plataforma em termos da aceleração da gravidade.

| CONDIÇÃO | ACELERAÇÃO |       |       |  |  |  |
|----------|------------|-------|-------|--|--|--|
|          | X (g)      | Y (g) | Z (g) |  |  |  |
| DOC      | 0,19       | 0,18  | 0,02  |  |  |  |
| DEC      | 0,40       | 0,27  | 0,12  |  |  |  |

Tabela 37 Acelerações inerciais para o pipe rack em DOC e DEC.

Diferentemente do considerado no projeto do estudo de caso anterior, os vetores acelerações foram computados em todos os eixos como vetores unitários para que os vetores U1, U2 e U3 sejam contemplados aos casos de carregamentos da análise, conforme a Figura 41.

| Vector 1 | Vector 2 | Vector 3 |
|----------|----------|----------|
| × 1.000  |          |          |
| Y:       | 1.000    |          |
| Z:       |          | 1.000    |
| ) in G's | ) in G's | ) in G's |
| ⊖ in F/L | in F/L   | ⊖ in F/L |

# Fig. 41 Input de valores dos vetores das acelerações do software CAESAR II.

Os valores das acelerações para DOC e DEC informados na Tabela 37 foram multiplicados aos vetores correspondentes nos casos de carregamentos.

| CASO | COMBINAÇÃO                       | TIPO | DESCRIÇÃO   |
|------|----------------------------------|------|-------------|
| L1   | WW+HP+H                          | HYD  | -           |
| L2   | W+D1+T1+P1+H                     | OPE  | -           |
| L3   | W+D1+T1+P1+H+0.4U1+0.27U2+0.12U3 | OPE  | ACELERAÇÕES |
| L4   | W+D1+T1+P1+H+0.4U1+0.27U2-0.12U3 | OPE  | COMBINADAS  |
| L5   | W+D1+T1+P1+H+0.4U1-0.27U2+0.12U3 | OPE  | PARA DEC    |
| L6   | W+D1+T1+P1+H+0.4U1-0.27U2-0.12U3 | OPE  |             |
| L7   | W+D1+T1+P1+H-0.4U1+0.27U2+0.12U3 | OPE  |             |
| L8   | W+D1+T1+P1+H-0.4U1+0.27U2-0.12U3 | OPE  |             |
| L9   | W+D1+T1+P1+H-0.4U1-0.27U2+0.12U3 | OPE  |             |
| L10  | W+D1+T1+P1+H-0.4U1-0.27U2-0.12U3 | OPE  |             |
| L11  | W+D1+T1+P1+H+WIN1                | OPE  | -           |
| L12  | W+D1+T1+P1+H+WIN2                | OPE  | -           |

| CASO | COMBINAÇÃO                        | TIPO | DESCRIÇÃO   |
|------|-----------------------------------|------|-------------|
| L13  | W+D1+D2+T1+P1+H                   | OPE  | -           |
| L14  | W+D1+D3+T1+P1+H                   | OPE  | -           |
| L15  | W+D1+T1+P1+H+0.19U1+0.18U2+0.02U3 | OPE  | ACELERAÇÕES |
| L16  | W+D1+T1+P1+H+0.19U1+0.18U2-0.02U3 | OPE  | COMBINADAS  |
| L17  | W+D1+T1+P1+H+0.19U1-0.18U2+0.02U3 | OPE  | PARA DOC    |
| L18  | W+D1+T1+P1+H+0.19U1-0.18U2-0.02U3 | OPE  |             |
| L19  | W+D1+T1+P1+H-0.19U1+0.18U2+0.02U3 | OPE  |             |
| L20  | W+D1+T1+P1+H-0.19U1+0.18U2-0.02U3 | OPE  |             |
| L21  | W+D1+T1+P1+H-0.19U1-0.18U2+0.02U3 | OPE  |             |
| L22  | W+D1+T1+P1+H-0.19U1-0.18U2-0.02U3 | OPE  |             |

No que se refere à avaliação da fadiga, foram aplicados fatores de altura de onda em um total de 10 faixas, sendo 7 para a condição DOC, e 3 para a condição DEC. Os fatores de altura foram aplicados somente para os deslocamentos estruturais do FPSO. Os casos de carregamentos do projeto executado correspondentes a cada faixa de altura de onda estão informados na última coluna da Tabela 39, que por sua vez se encontram discriminados no Apêndice 11.1.2 desta dissertação. A curva de fadiga considerada na análise foi a F3 da norma DNV RP C203.

| FATORES DE ALTURAS CONSIDERADOS NO PROJETO |    |                        |                           |       |                           |  |  |
|--------------------------------------------|----|------------------------|---------------------------|-------|---------------------------|--|--|
| CONDIÇÃO FAIXA                             |    | ALTURA DE<br>ONDA MÍN. | ALTURA<br>DE ONDA<br>MÁX. | FATOR | CASOS DE<br>CARREGAMENTOS |  |  |
|                                            | 1  | 0,25                   | 2,00                      | 0,05  | L164@L171                 |  |  |
| DOC                                        | 2  | 2,25                   | 3,00                      | 0,10  | L156@163                  |  |  |
|                                            | 3  | 3,25                   | 4,00                      | 0,20  | 148@155                   |  |  |
|                                            | 4  | 4,25                   | 5,00                      | 0,30  | 140@147                   |  |  |
|                                            | 5  | 5,25                   | 6,00                      | 0,50  | 132@L139                  |  |  |
|                                            | 6  | 6,25                   | 7,00                      | 0,70  | L124@L131                 |  |  |
|                                            | 7  | 7,25                   | 8,00                      | 1,00  | L116@L123                 |  |  |
|                                            | 8  | 8,25                   | 9,00                      | 0,60  | L108@L115                 |  |  |
| DEC                                        | 9  | 9,25                   | 10,00                     | 0,80  | L100@L107                 |  |  |
|                                            | 10 | 10,25                  |                           | 1,00  | L92@L99                   |  |  |

Tabela 39 Determinação dos fatores de altura de onda considerados no projeto executado.

Os casos de carregamento referentes à avaliação da fadiga considerados no projeto executado encontram-se resumidos na Tabela 5.17. Para identificação de todos os casos indicados, consultar o Apêndice 11.1.2.

Os casos L31 e L32, na coluna "Combinação", correspondem aos casos de deslocamento estrutural para SAG e HOG, respectivamente, na condição DEC. Para a condição DOC, os casos de deslocamentos correspondentes aos movimentos de SAG e HOG são L89 e

L90, respectivamente. Os casos L49 ao L56 representam as 8 combinações das acelerações para a condição DEC. Para a condição DOC, as combinações são representadas pelos casos L57 ao L64. Os fatores da Tabela 39 foram multiplicados pela parcela dinâmica do deslocamento estrutural (0,6) tanto para SAG quanto para HOG.

| CASO | COMBINAÇÃO          | TIPO | Nº CICLOS | DESCRIÇÃO          |
|------|---------------------|------|-----------|--------------------|
| L91  | L26                 | FAT  | 7000      | TÉRMICA            |
| L92  | 0.6L31-0.6L32+L49   | FAT  | 1         | Faixa 10 de altura |
| L93  | 0.6L31-0.6L32+L50   | FAT  | 1         | de onda - Fator    |
| L94  | 0.6L31-0.6L32+L51   | FAT  | 1         | 1,0 - DEC          |
| L95  | 0.6L31-0.6L32+L52   | FAT  | 1         |                    |
| L96  | 0.6L31-0.6L32+L53   | FAT  | 1         |                    |
| L97  | 0.6L31-0.6L32+L54   | FAT  | 1         |                    |
| L98  | 0.6L31-0.6L32+L55   | FAT  | 1         |                    |
| L99  | 0.6L31-0.6L32+L56   | FAT  | 1         |                    |
| L100 | 0.48L31-0.48L32+L49 | FAT  | 909       | Faixa 9 de altura  |
| L101 | 0.48L31-0.48L32+L50 | FAT  | 909       | de onda - Fator    |
| L102 | 0.48L31-0.48L32+L51 | FAT  | 909       | 0,8 - DEC          |
| L103 | 0.48L31-0.48L32+L52 | FAT  | 909       |                    |
| L104 | 0.48L31-0.48L32+L53 | FAT  | 909       |                    |
| L105 | 0.48L31-0.48L32+L54 | FAT  | 909       |                    |
| L106 | 0.48L31-0.48L32+L55 | FAT  | 909       |                    |
| L107 | 0.48L31-0.48L32+L56 | FAT  | 909       |                    |
| L108 | 0.36L31-0.36L32+L49 | FAT  | 2878      | Faixa 8 de altura  |
| L109 | 0.36L31-0.36L32+L50 | FAT  | 2878      | de onda - Fator    |
| L110 | 0.36L31-0.36L32+L51 | FAT  | 2878      | 0,6 - DEC          |
| L111 | 0.36L31-0.36L32+L52 | FAT  | 2878      |                    |
| L112 | 0.36L31-0.36L32+L53 | FAT  | 2878      |                    |
| L113 | 0.36L31-0.36L32+L54 | FAT  | 2878      |                    |
| L114 | 0.36L31-0.36L32+L55 | FAT  | 2878      |                    |
| L115 | 0.36L31-0.36L32+L56 | FAT  | 2878      |                    |
| L116 | 0.6L89-0.6L90+L57   | FAT  | 6056      | Faixa 7 de altura  |
| L117 | 0.6L89-0.6L90+L58   | FAT  | 6056      | de onda - Fator    |
| L118 | 0.6L89-0.6L90+L59   | FAT  | 6056      | 1.0 - DOC          |
| L119 | 0.6L89-0.6L90+L60   | FAT  | 6056      |                    |
| L120 | 0.6L89-0.6L90+L61   | FAT  | 6056      |                    |
| L121 | 0.6L89-0.6L90+L62   | FAT  | 6056      |                    |
| L122 | 0.6L89-0.6L90+L63   | FAT  | 6056      |                    |
| L123 | 0.6L89-0.6L90+L64   | FAT  | 6056      |                    |
| L124 | 0.42L89-0.42L90+L57 | FAT  | 15900     | Faixa 6 de altura  |
| L125 | 0.42L89-0.42L90+L58 | FAT  | 15900     | de onda - Fator    |
| L126 | 0.42L89-0.42L90+L59 | FAT  | 15900     | 0,7 - DOC          |

Tabela 40 Resumo dos casos de carregamentos considerados para a determinação do dano à fadiga no projeto executado.

| CASO | COMBINAÇÃO          | TIPO | Nº CICLOS | DESCRIÇÃO         |
|------|---------------------|------|-----------|-------------------|
| L127 | 0.42L89-0.42L90+L60 | FAT  | 15900     |                   |
| L128 | 0.42L89-0.42L90+L61 | FAT  | 15900     |                   |
| L129 | 0.42L89-0.42L90+L62 | FAT  | 15900     |                   |
| L130 | 0.42L89-0.42L90+L63 | FAT  | 15900     |                   |
| L131 | 0.42L89-0.42L90+L64 | FAT  | 15900     |                   |
| L132 | 0.3L89-0.3L90+L57   | FAT  | 53450     | Faixa 5 de altura |
| L133 | 0.3L89-0.3L90+L58   | FAT  | 53450     | de onda - Fator   |
| L134 | 0.3L89-0.3L90+L59   | FAT  | 53450     | 0,5 - DOC         |
| L135 | 0.3L89-0.3L90+L60   | FAT  | 53450     |                   |
| L136 | 0.3L89-0.3L90+L61   | FAT  | 53450     |                   |
| L137 | 0.3L89-0.3L90+L62   | FAT  | 53450     |                   |
| L138 | 0.3L89-0.3L90+L63   | FAT  | 53450     |                   |
| L139 | 0.3L89-0.3L90+L64   | FAT  | 53450     |                   |
| L140 | 0.18L89-0.18L90+L57 | FAT  | 184737    | Faixa 4 de altura |
| L141 | 0.18L89-0.18L90+L58 | FAT  | 184737    | de onda - Fator   |
| L142 | 0.18L89-0.18L90+L59 | FAT  | 184737    | 0,3 - DOC         |
| L143 | 0.18L89-0.18L90+L60 | FAT  | 184737    |                   |
| L144 | 0.18L89-0.18L90+L61 | FAT  | 184737    |                   |
| L145 | 0.18L89-0.18L90+L62 | FAT  | 184737    |                   |
| L146 | 0.18L89-0.18L90+L63 | FAT  | 184737    |                   |
| L147 | 0.18L89-0.18L90+L64 | FAT  | 184737    |                   |
| L148 | 0.12L89-0.12L90+L57 | FAT  | 980456    | Faixa 3 de altura |
| L149 | 0.12L89-0.12L90+L58 | FAT  | 980456    | de onda - Fator   |
| L150 | 0.12L89-0.12L90+L59 | FAT  | 980456    | 0,2 - DOC         |
| L151 | 0.12L89-0.12L90+L60 | FAT  | 980456    |                   |
| L152 | 0.12L89-0.12L90+L61 | FAT  | 980456    |                   |
| L153 | 0.12L89-0.12L90+L62 | FAT  | 980456    |                   |
| L154 | 0.12L89-0.12L90+L63 | FAT  | 980456    |                   |
| L155 | 0.12L89-0.12L90+L64 | FAT  | 980456    |                   |
| L156 | 0.06L89-0.06L90+L57 | FAT  | 4436056   | Faixa 2 de altura |
| L157 | 0.06L89-0.06L90+L58 | FAT  | 4436056   | de onda - Fator   |
| L158 | 0.06L89-0.06L90+L59 | FAT  | 4436056   | 0,1 - DOC         |
| L159 | 0.06L89-0.06L90+L60 | FAT  | 4436056   |                   |
| L160 | 0.06L89-0.06L90+L61 | FAT  | 4436056   |                   |
| L161 | 0.06L89-0.06L90+L62 | FAT  | 4436056   |                   |
| L162 | 0.06L89-0.06L90+L63 | FAT  | 4436056   |                   |
| L163 | 0.06L89-0.06L90+L64 | FAT  | 4436056   |                   |
| L164 | 0.03L89-0.03L90+L57 | FAT  | 5784015   | Faixa 1 de altura |
| L165 | 0.03L89-0.03L90+L58 | FAT  | 5784015   | de onda - Fator   |
| L166 | 0.03L89-0.03L90+L59 | FAT  | 5784015   | 0,05 - DOC        |
| L167 | 0.03L89-0.03L90+L60 | FAT  | 5784015   |                   |
| L168 | 0.03L89-0.03L90+L61 | FAT  | 5784015   |                   |
| L169 | 0.03L89-0.03L90+L62 | FAT  | 5784015   |                   |
| L170 | 0.03L89-0.03L90+L63 | FAT  | 5784015   |                   |

| CASO | COMBINAÇÃO          | TIPO | Nº CICLOS | DESCRIÇÃO |
|------|---------------------|------|-----------|-----------|
| L171 | 0.03L89-0.03L90+L64 | FAT  | 5784015   |           |

A Tabela 41 apresenta os resultados de dano extraído do *software* CAESAR II por faixa de altura para a curva F3 da DNV RP C203 do projeto executado.

|          |       | ALTURA |       |       |      |       | Variação           | CASOS DE     |  |
|----------|-------|--------|-------|-------|------|-------|--------------------|--------------|--|
| CONDIÇÃO | FAIXA | MÍN.   | MÁX.  | FATOR | DANO | %     | de Tensão<br>(MPa) | CARREGAMENTO |  |
|          | 1     | 0      | 2     | 0,05  | 0,67 | 18,26 | 13,5 @<br>27,1     | L164@L171    |  |
|          | 2     | 2      | 3     | 0,10  | 0,78 | 21,25 | 14,0 @<br>30,4     | L156@L163    |  |
|          | 3     | 3      | 4     | 0,20  | 0,65 | 17,71 | 19,8 @<br>43,4     | L148@L155    |  |
| DOC      | 4     | 4      | 5     | 0,30  | 0,34 | 9,26  | 31,3 @<br>57,0     | L140@L147    |  |
|          | 5     | 5      | 6     | 0,50  | 0,40 | 10,90 | 61,4 @<br>84,7     | L132@L139    |  |
|          | 6     | 6      | 7     | 0,70  | 0,32 | 8,72  | 77,8 @<br>112,8    | L124@L131    |  |
|          | 7     | 7      | 8     | 1,00  | 0,36 | 9,81  | 117,8 @<br>155,0   | L116@L123    |  |
| DEC      | 8     | 8      | 9     | 0,60  | 0,09 | 2,45  | 75,4 @<br>157,7    | L108@L115    |  |
|          | 9     | 9      | 10    | 0,80  | 0,06 | 1,63  | 101,9 @<br>191,0   | L100@L107    |  |
|          | 10    | 10     | 10,25 | 1,00  | 0,00 | 0,00  | 128,5 @<br>224,0   | L92@L99      |  |
|          |       |        | Г     | TOTAL | 3,67 |       |                    |              |  |

Tabela 41 - Separação dos danos por altura de onda devido às acelerações e deslocamentos.

O dano acumulado de 3,67 ocorre na conexão do tipo "tê" forjado de 12" x 12", tendo sua intersecção representada pelo nó 440, conforme Figura 42.



Fig. 42 Indicação da conexão tipo "tê" na qual foi encontrado o dano de 3,67 de acordo com o projeto executado. Fonte: (S/D).

Assim como verificado nos estudos de caso anteriores, se observa que o maior dano acontece em região na qual o arranjo da tubulação possui trechos em mais de uma orientação. Neste caso, é intensificado pelos acessórios presentes no arranjo que proporcionam uma maior rigidez ao sistema além da concentração de massa, conforme mostrado na Figura 43.

A Tabela 42 traz a contribuição do dano individual da fadiga térmica e da fadiga ocasionada pelos deslocamentos estruturais combinados às acelerações. Observa-se que a parcela do dano gerado pela fadiga térmica é bem reduzida.

| Fonte de Fadiga                | Dano | Distribuição do dano |
|--------------------------------|------|----------------------|
| Térmica                        | 0,05 | 1,3 %                |
| Acelerações e<br>Deslocamentos | 3,67 | 98,7 %               |
| Total                          | 3,72 |                      |

| <b>T</b> 1 1   | 40 G   | ~        | 1   | 1     |     | C 4   | 1  | 6 1'    |
|----------------|--------|----------|-----|-------|-----|-------|----|---------|
| <b>I</b> abela | 42 - S | eparacao | aos | danos | por | ionte | ae | ladiga. |

Para os casos de carregamento adotados neste projeto, não é possível a identificação da aceleração de maior contribuição para o dano na derivação do nó 440 devido à utilização de apenas uma resultante para os três vetores acelerações (U1, U2 e U3), diferentemente do que ocorre para os casos de carregamento dos estudos de caso apresentados nos itens 5.1.1 e 5.1.2.

O dano devido às acelerações foi ligeiramente maior do que os danos causados pelos deslocamentos.



Fig. 43 Detalhe dos acessórios presentes no arranjo da tubulação. Fonte: (S/D).

A fim de atender ao dano máximo à fadiga de acordo o critério do projeto, limitado ao máximo de 1,0, foi assumida a premissa de que a linha que possui a conexão do tipo "tê", representada pelo nó 440 do CAESAR II, 100% radiografada. Desta forma, a nova curva de fadiga considerada na análise de flexibilidade deverá ser a curva D da norma BS PD5500, menos conservativa do que a curva F3 da DNV. Uma vez considerada esta nova curva, o dano acumulado foi reduzido para 0,95 na mesma conexão.

### • Fator de altura para deslocamentos e acelerações:

Este estudo foi realizado com o objetivo de identificar o dano ao ser considerado o fator de altura de onda, não só para os deslocamentos conforme já obtido anteriormente, mas também para as acelerações de DOC e DEC. A Tabela 43 retrata este cenário. Observa-se uma redução de 49% do dano obtido originalmente que foi de 3,67. O ponto nodal de ocorrência do maior dano permaneceu sendo o nó 440, conforme identificado na Figura 42.

| CONDIÇÃ | FAIX |      |       | FATO | TATO DAN | FATO DAN |           | CASOS DE |
|---------|------|------|-------|------|----------|----------|-----------|----------|
| 0       | Α    | MÍN. | MÁX.  | R    | 0        | /0       | O O       |          |
|         | 1    | 0    | 2     | 0,05 | 0,00     | 0,0<br>0 | L228@L235 |          |
|         | 2    | 2    | 3     | 0,10 | 0,05     | 0,0<br>3 | L220@L227 |          |
|         | 3    | 3    | 4     | 0,20 | 0,34     | 0,1<br>8 | L212@L219 |          |
| DOC     | 4    | 4    | 5     | 0,30 | 0,29     | 0,1<br>5 | L204@L211 |          |
|         | 5    | 5    | 6     | 0,50 | 0,40     | 0,2<br>1 | L196@L203 |          |
|         | 6    | 6    | 7     | 0,70 | 0,32     | 0,1<br>7 | L188@L195 |          |
|         | 7    | 7    | 8     | 1,00 | 0,36     | 0,1<br>9 | L180@L187 |          |
|         | 8    | 8    | 9     | 0,60 | 0,07     | 0,0<br>4 | L172@L179 |          |
| DEC     | 9    | 9    | 10    | 0,80 | 0,05     | 0,0<br>3 | L164@L171 |          |
|         | 10   | 10   | 10,25 | 1,00 | 0,00     | 0,0      | L156@L163 |          |
| TOTAL   |      |      |       |      | 1,89     |          |           |          |

Tabela 43 Resultado do dano com fator de altura aplicado aos deslocamentos e acelerações.

Através do *software* CAESAR II, um estudo com maior agrupamento das alturas de ondas foi realizado. Neste, as alturas de onda foram agrupadas de 1 em 1 metro conforme a Tabela 44. O dano encontrado através da simulação apresenta um expressivo aumento. Para identificação dos casos de carregamento considerados neste estudo, ver Apêndice V.

Tabela 44 Separação dos danos para acelerações e deslocamentos com agrupamento de 1 em 1 metro.

| CONDIÇÃO | FAIXA | FATOR | DANO | %    | CASOS DE<br>CARREGAMENTO |
|----------|-------|-------|------|------|--------------------------|
| DOC      | 1     | 0,091 | 0,00 | 0,00 | L298@L305                |
|          | 2     | 0,182 | 1,31 | 0,13 | L306@L313                |

| CONDIÇÃO | FAIXA | FATOR | DANO  | %    | CASOS DE<br>CARREGAMENTO |
|----------|-------|-------|-------|------|--------------------------|
|          | 3     | 0,273 | 5,09  | 0,49 | L324@L321                |
|          | 4     | 0,364 | 2,41  | 0,23 | L322@L329                |
|          | 5     | 0,455 | 0,78  | 0,07 | L330@L337                |
|          | 6     | 0,545 | 0,37  | 0,04 | L338@L345                |
|          | 7     | 0,636 | 0,18  | 0,02 | L346@L353                |
|          | 8     | 0,727 | 0,10  | 0,01 | L354@L361                |
|          | 9     | 0,818 | 0,14  | 0,01 | L273@L280                |
| DEC      | 10    | 0,909 | 0,05  | 0,00 | L281@L288                |
|          | 11    | 1     | 0,00  | 0,00 | L289@L296                |
|          | TC    | TAL   | 10,42 |      |                          |

A grande divergência de resultados de dano, onde foi obtido o dano de 3,67 para o agrupamento do projeto executado e 10,42 para o agrupamento de 1 em 1 metro ocorre pela variação dos fatores de altura de onda considerados nos dois cenários. Os fatores de altura de onda das Tabelas 43 e 44 não são proporcionais às alturas de onda.

Este é um ponto muito importante a ser avaliado, principalmente para a elaboração do procedimento padrão de fadiga que será apresentado no Capítulo VI desta dissertação.

Conforme um dos objetivos deste trabalho, busca-se um comparativo entre as diversas considerações adotadas nos casos de carregamentos de projetos já executados.

Na Tabela 45, estão apresentados os variados fatores de altura de ondas de diferentes projetos. Além dos fatores considerados nos estudos de caso apresentados até aqui, foram levantados os fatores de mais um projeto, totalizando um comparativo entre três projetos já executados, além do estudo com fatores para agrupamento de 1 em 1 metro de altura de onda.

| COND. | FAIXA | ALTUR<br>A (m) | FATOR<br>Projeto<br>1 | FATOR<br>Projeto<br>2 | FATOR<br>Projeto<br>3 | FATOR<br>p/<br>AGRP.<br>1 em<br>1m | CICLOS<br>Projeto 1 | CICLOS<br>Projeto 2 | CICLOS<br>Projeto 3 | CICLOS p/<br>AGRP. 1<br>em 1m |
|-------|-------|----------------|-----------------------|-----------------------|-----------------------|------------------------------------|---------------------|---------------------|---------------------|-------------------------------|
|       | 1     | 0 a 1          | 0.05                  | 0,08                  | 0,077                 | 0,091                              | 46 272 120          | 1.841.288           | 2.046.937           | 2.046.937                     |
|       | 2     | 1 a 2          | 0,05                  | 0,17                  | 0,179                 | 0,182                              | 40.272.120          | 44.430.816          | 47.864.464          | 47.864.464                    |
|       | 3     | 2 a 3          | 0,1                   | 0,25                  | 0,282                 | 0,273                              | 35.488.448          | 35.488.440          | 34.211.180          | 34.211.180                    |
| DOC   | 4     | 3 a 4          | 0,2                   | 0,34                  | 0,385                 | 0,364                              | 7.843.648           | 7.843.648           | 6.746.746           | 6.746.746                     |
| DOC   | 5     | 4 a 5          | 0,3                   | 0,43                  | 0,487                 | 0,455                              | 1.477.896           | 1.477.872           | 1.119.145           | 1.119.145                     |
|       | 6     | 5 a 6          | 0,5                   | 0,51                  | 0,590                 | 0,545                              | 427.600             | 427.608             | 313.006             | 313.006                       |
|       | 7     | 6 a 7          | 0,7                   | 0,60                  |                       | 0,636                              | 127.200             | 127.192             |                     | 93.375                        |
|       | 8     | 7 a 8          | 1                     | 0,69                  |                       | 0,727                              | 48.448              | 48.448              |                     | 34.342                        |
|       | 9     | 8 a 9          | 0,6                   | 0,77                  | 1                     | 0,818                              | 23.024              | 23.016              | 149.319             | 17.139                        |
| DEC   | 10    | 9 a 10         | 0,8                   | 0,86                  |                       | 0,909                              | 7.272               | 7.264               |                     | 4.463                         |
|       | 11    | 10 a 11        | 1                     | 1                     |                       | 1                                  | 1                   | 1                   |                     | 1                             |

Tabela 45 Comparativo entre fatores de altura de variados projetos e para o agrup. de 1 em 1 metro.

Observa-se, de acordo com a variação do resultado de dano encontrado, que para as faixas de maiores ciclos de ondas, correspondentes às faixas 1, 2, 3 e 4 da Tabela 45, responsáveis pela maior parcela do dano gerado no sistema de tubulações, a pequena variação do fator de altura de onda toma grandes proporções no resultado do dano. Note os fatores de altura de onda do Projeto 1, que são menores que os fatores dos demais projetos na faixa de altura de onda de 0 a 6 metros. Isto implica numa redução significativa no cálculo do dano por fadiga.

# 5.1.3 Estudo de Caso 3 - Fadiga Térmica x Fadiga devido às acelerações e deslocamentos

Este estudo de caso busca avaliar a contribuição da fadiga gerada pelos ciclos térmicos no dano total de três sistemas de tubulações que integram as linhas de produção de óleo e injeção de gás para aumento da pressão interna dos poços. Estes sistemas, assim como os demais estudados até aqui, pertencem a um projeto já concluído.

Em todos estes três sistemas, a temperatura de projeto é de 70°C, as demais características especificadas de cada arranjo estão descritas nos itens a seguir. A fadiga proveniente dos deslocamentos de *SAG/HOG* e das acelerações foi considerada no cálculo somente para a condição DEC (*Design Extreme Condition*). Além disso, foram consideradas as ondas máximas, tanto para o cálculo das acelerações quanto para os deslocamentos. Os casos de carregamentos deste estudo de caso estão presentes no Apêndice 11.1.3 desta dissertação.

5.1.3.1 Arranjo 1 com Ø8":



Fig. 44 Arranjo geral da análise do arranjo 1 extraído do software CAESAR II. Fonte: (S/D).

O sistema de tubulações é de 8" de diâmetro nominal, fabricado em aço carbono API 5L Grau X65, com espessura de parede de 29,97 mm, e comprimento de, aproximadamente, 120 metros, escoando ora óleo, ora gás.

As Tabelas 46, 47 e 48 apresentam os casos de carregamento e os resultados de dano para as duas fontes de fadiga, sendo um total de 7000 ciclos para a fonte de fadiga térmica e 144 milhões de ciclos para a fonte de fadiga devido às acelerações e deslocamentos. Para identificação dos demais casos de carregamentos não informados nestas tabelas, consultar o Apêndice 11.1.3.

|     | CASO          | DESCRIÇÃO                  | Nº CICLOS  | DANO |
|-----|---------------|----------------------------|------------|------|
| L82 | L5            | W+D1+T1+P1                 | 7.000      | 0,00 |
| L83 | L6+L36-L7-L51 | D8+(+U1+U2+U3)-D9-(-U1-U2- | 18.000.000 |      |
|     |               | U3)                        |            |      |
| L84 | L6+L37-L7-L50 | D8+(+U1-U2+U3)-D9-(-U1+U2- | 18.000.000 |      |
|     |               | U3)                        |            |      |
| L85 | L6+L38-L7-L49 | D8+(+U1+U2-U3)-D9-(-U1-    | 18.000.000 |      |
|     |               | U2+U3)                     |            | 0.90 |
| L86 | L6+L39-L7-L48 | D8+(+U1-U2-U3)-D9-(-       | 18.000.000 | 0,80 |
|     |               | U1+U2+U3                   |            |      |
| L87 | L6+L40-L7-L47 | D8+(-U1+U2+U3)-D9-(+U1-U2- | 18.000.000 |      |
|     |               | U3)                        |            |      |
| L88 | L6+L41-L7-L46 | D8+(-U1-U2+U3)-D9-(+U1+U2- | 18.000.000 |      |
|     |               | U3)                        |            |      |

Tabela 46 Dano obtido para a fadiga térmica e combinação das acelerações e deslocamentos.

| L89 | L6+L42-L7-L45 | D8+(-U1+U2-U3)-D9-(+U1- | 18.000.000 |      |
|-----|---------------|-------------------------|------------|------|
|     |               | U2+U3)                  |            |      |
| L90 | L6+L43-L7-L44 | D8+(-U1-U2-U3)-D9-      | 18.000.000 |      |
|     |               | (+U1+U2+U3)             |            |      |
|     |               |                         | TOTAL      | 0,80 |

onde:

- D8 deslocamento estrutural de SAGGING;
- D9 deslocamento estrutural de HOGGING;
- U1 aceleração no eixo x;
- U2 aceleração no eixo y;
- U3 aceleração no eixo z.



Fig. 45 Detalhe para o ponto nodal 5020 de ocorrência do dano de 0,80. Fonte: (S/D).

Este sistema de tubulações é composto por linhas de 8" de diâmetro nominal, fabricado em aço carbono API 5L Grau X65, com espessura de parede de 15,09 mm, e comprimento de, aproximadamente, 120 metros, escoando ora óleo, ora gás.

<sup>5.1.3.2</sup> Arranjo 2 com Ø8":



Fig. 46 Arranjo geral da análise do arranjo 2 extraído do software CAESAR II. Fonte: (S/D).

|     | CASO          | DESCRIÇÃO                     | N° CICLOS  | DANO |
|-----|---------------|-------------------------------|------------|------|
| L82 | L5            | W+D1+T1+P1                    | 7.000      | 0,00 |
| L83 | L6+L36-L7-L51 | D8+(+U1+U2+U3)-D9-(-U1-U2-U3) | 18.000.000 |      |
| L84 | L6+L37-L7-L50 | D8+(+U1-U2+U3)-D9-(-U1+U2-U3) | 18.000.000 |      |
| L85 | L6+L38-L7-L49 | D8+(+U1+U2-U3)-D9-(-U1-U2+U3) | 18.000.000 |      |
| L86 | L6+L39-L7-L48 | D8+(+U1-U2-U3)-D9-(-U1+U2+U3  | 18.000.000 | 0.77 |
| L87 | L6+L40-L7-L47 | D8+(-U1+U2+U3)-D9-(+U1-U2-U3) | 18.000.000 | 0,77 |
| L88 | L6+L41-L7-L46 | D8+(-U1-U2+U3)-D9-(+U1+U2-U3) | 18.000.000 |      |
| L89 | L6+L42-L7-L45 | D8+(-U1+U2-U3)-D9-(+U1-U2+U3) | 18.000.000 |      |
| L90 | L6+L43-L7-L44 | D8+(-U1-U2-U3)-D9-(+U1+U2+U3) | 18.000.000 |      |
|     |               |                               | TOTAL      | 0,77 |

Tabela 47 Dano obtido para a fadiga térmica e combinação das acelerações e deslocamentos.



Fig. 47 Detalhe para o ponto nodal 25 de ocorrência do dano de 0,77. Fonte: (S/D).

5.1.3.3 Arranjo 3 com Ø8" e Ø20":

Este sistema de tubulações é composto por linhas de 8" e 20" de diâmetro nominal, fabricadas em aço carbono API 5L Grau X65, com espessuras de parede de 15,09 mm e 38,10, respectivamente. O sistema possui comprimento de, aproximadamente, 135 metros, escoando ora óleo, ora gás.



Fig. 48 Arranjo geral da análise do arranjo 3, com detalhe para a linha de Ø20", extraído do *software* CAESAR II. Fonte: (S/D).

|     | CASO              | DESCRIÇÃO                     | N°<br>CICLOS | DANO |
|-----|-------------------|-------------------------------|--------------|------|
| L82 | L5                | W+D1+T1+P1                    | 7.000        | 0,00 |
| L83 | L6+L36-L7-<br>L51 | D8+(+U1+U2+U3)-D9-(-U1-U2-U3) | 18.000.000   |      |
| L84 | L6+L37-L7-<br>L50 | D8+(+U1-U2+U3)-D9-(-U1+U2-U3) | 18.000.000   |      |
| L85 | L6+L38-L7-<br>L49 | D8+(+U1+U2-U3)-D9-(-U1-U2+U3) | 18.000.000   |      |
| L86 | L6+L39-L7-<br>L48 | D8+(+U1-U2-U3)-D9-(-U1+U2+U3  | 18.000.000   | 0.71 |
| L87 | L6+L40-L7-<br>L47 | D8+(-U1+U2+U3)-D9-(+U1-U2-U3) | 18.000.000   | 0,71 |
| L88 | L6+L41-L7-<br>L46 | D8+(-U1-U2+U3)-D9-(+U1+U2-U3) | 18.000.000   |      |
| L89 | L6+L42-L7-<br>L45 | D8+(-U1+U2-U3)-D9-(+U1-U2+U3) | 18.000.000   |      |
| L90 | L6+L43-L7-        | D8+(-U1-U2-U3)-D9-(+U1+U2+U3) | 18.000.000   |      |
|     |                   |                               | TOTAL        | 0,71 |

Tabela 48 - Dano obtido para a fadiga térmica e combinação das acelerações e deslocamentos.



Fig. 49 Detalhe para o ponto nodal 3020 de ocorrência do dano de 0,71. Fonte: (S/D).

Observa-se a partir dos resultados de danos mostrados nas Tabelas 46, 47 e 48 que os três sistemas de tubulações apresentam vida infinita à fadiga térmica devido a temperatura de operação de apenas 70 °C, e o traçado e suportação das linhas que lhes confere um boa flexibilidade.

# 5.1.4 Avaliação de Dano por Faixa de Altura de Ondas

Este estudo de caso busca identificar as parcelas de danos nas várias faixas de alturas de onda a partir da consideração de fatores lineares para cálculo dos deslocamentos de *sag* e *hog* em função da altura de onda.

Os resultados de dano foram levantados para três diferentes sistemas analisados de um mesmo projeto de engenharia, ou seja, os casos de carregamento e os próprios fatores de altura utilizados nas três análises apresentadas são comuns.

As duas primeiras análises correspondem aos estudos apresentados nesta dissertação nos itens 5.1.1.1 e 5.1.1.2, respectivamente. A terceira corresponde ao sistema de injeção de água e remoção de sulfato dos poços de produção, composto por linhas de 8" de diâmetro nominal, fabricadas em aço carbono API 5L Grau X65, com espessura de 15,09 mm, conforme demonstrado na Figura 50.



Fig. 50 Vista isométrica da Análise 3 de injeção de água e remoção de sulfato. Fonte: (S/D).

Conforme comentado anteriormente, os fatores de altura de onda estão relacionados somente com a altura da onda, não levando em consideração o período de incidência da mesma. Para identificação dos casos de carregamento das três análises indicadas na Tabela 49, consultar o Apêndice 11.1.1 desta dissertação.

| ALTURA<br>DE ONDA | DANO<br>ANÁLISE<br>1 | DANO<br>ANÁLISE<br>2 | DANO<br>ANÁLISE<br>3 | ALT.<br>MÉDIA<br>POR<br>FAIXA | CICLOS<br>DE<br>REPETIÇ<br>ÕES | %<br>MÉDIO<br>DISTRIB<br>UIÇÃO<br>DO<br>DANO | CASOS DE<br>CARREGA<br>MENTOS |
|-------------------|----------------------|----------------------|----------------------|-------------------------------|--------------------------------|----------------------------------------------|-------------------------------|
| FAIXA 1           | 0,01                 | 0,00                 | 0,02                 | 0,5 m                         | 2.046.937                      | 1                                            | L176@L183                     |
| FAIXA 2           | 0,53                 | 0,05                 | 0,46                 | 1,5 m                         | 47.864.464                     | 27                                           | L184@L191                     |
| FAIXA 3           | 1,29                 | 0,17                 | 0,33                 | 2,5 m                         | 34.211.180                     | 39                                           | L192@L199                     |
| FAIXA 4           | 0,61                 | 0,11                 | 0,06                 | 3,5 m                         | 6.746.746                      | 17                                           | L200@L207                     |
| FAIXA 5           | 0,20                 | 0,05                 | 0,01                 | 4,5 m                         | 1.119.145                      | 6                                            | L208@L215                     |
| FAIXA 6           | 0,10                 | 0,03                 | 0,00                 | 5,5 m                         | 313.006                        | 3                                            | L216@L223                     |
| FAIXA 7           | 0,21                 | 0,06                 | 0,00                 | 8,5 m                         | 149.320                        | 7                                            | L224@L231                     |
| TOTAL             | 2,95                 | 0,46                 | 0,88                 |                               |                                |                                              |                               |

Tabela 49 Separação de dano por faixa de altura e número de ciclos.

# 5.1.5 Aceleração Crítica

Este estudo de caso tem como objetivo avaliar uma metodologia simplificada para o cálculo de dano devido às acelerações, baseada no emprego do maior caso de carregamento dentre as combinações das acelerações. Busca-se identificar o resultado do dano encontrado ao se utilizar a metodologia do caso de carregamento crítico. A Tabela 50 apresenta os vinte primeiros casos de carregamento considerados na análise do sistema de alimentação de água de determinado módulo de um projeto de engenharia já concluído, apresentado na Fig. 51. Este sistema foi escolhido por ter características que o tornam mais suscetível ao dano por fadiga devido às acelerações, como possuir grandes massas concentradas devido à presença de várias válvulas.

Este sistema de tubulações é composto por linhas que transportam água de 8", 12" e 18" de diâmetro nominal, fabricadas em aço carbono API 5L Grau B, com espessuras de parede de 6,35mm para todos os diâmetros.



Fig. 51 Vista isométrica do sistema de alimentação de água. As tubulações sem indicação possuem diâmetro nominal de 8". Fonte: (S/D).

Geralmente, são considerados oito casos de combinações algébricas dos vetores acelerações U1, U2 e U3, conforme demonstrado nos casos L12 ao L19.

| LINHA | TIPO | CASO DE<br>CARREGAMENTO | COMBINAÇÃO |
|-------|------|-------------------------|------------|
| L1    | HYD  | WW+HP                   | -          |
| L2    | OPE  | W+D1+T1+P1              | -          |
| L3    | OPE  | W+D2+T2+P2              | -          |
| L4    | SUS  | W+P1                    | -          |
| L5    | SUS  | WIN1                    | -          |
| L6    | SUS  | WIN2                    | -          |
| L7    | SUS  | U1                      | -          |
| L8    | SUS  | U2                      | -          |
| L9    | SUS  | U3                      | -          |
| L10   | EXP  | L2-L4                   | ALGÉBRICO  |
| L11   | EXP  | L3-L4                   | ALGÉBRICO  |
| L12   | SUS  | L7+L8+L9                | ALGÉBRICO  |
| L13   | SUS  | L7+L8-L9                | ALGÉBRICO  |
| L14   | SUS  | L7-L8+L9                | ALGÉBRICO  |
| L15   | SUS  | L7-L8-L9                | ALGÉBRICO  |
| L16   | SUS  | -L7+L8+L9               | ALGÉBRICO  |
| L17   | SUS  | -L7+L8-L9               | ALGÉBRICO  |
| L18   | SUS  | -L7-L8+L9               | ALGÉBRICO  |
| L19   | SUS  | -L7-L8-L9               | ALGÉBRICO  |
| L20   | SUS  | L7+L8+L9                | SRSS       |

Tabela 50 Casos de carregamentos - Aceleração crítica.

Cumprindo um dos objetivos desta dissertação que é o de avaliar os procedimentos de análise de projetos de engenharia já executados, e como já abordado no item 3.1.2 deste trabalho, verifica-se que a ordenação dos casos de carregamento desta análise foi desenvolvida sem a atenção necessária para o efeito das não linearidades, conforme exposto nas linhas L7, L8 e L9 da Tabela 50, onde os vetores das acelerações foram considerados isoladamente ao invés de serem combinados primeiramente com o caso de operação, para que, posteriormente, estes fossem subtraídos em uma combinação algébrica, conforme indicado na Tabela 51.

...

| Tabela 51 | - Casos de | carregamentos - | - Aceleração crítica. |  |
|-----------|------------|-----------------|-----------------------|--|
|           |            |                 |                       |  |

~

| LINHA | TIPO | CASO DE<br>CARREGAMENTO | COMBINAÇÃO/DESCRIÇÃO |
|-------|------|-------------------------|----------------------|
| L1    | HYD  | WW+HP                   | -                    |
| L2    | OPE  | W+D1+T1+P1              | -                    |
| L3    | OPE  | W+D2+T2+P2              | -                    |
| L4    | SUS  | W+P1                    | -                    |
| L5    | SUS  | WIN1                    | -                    |
| L6    | SUS  | WIN2                    | -                    |
| L7    | SUS  | W+D1+T1+P1+U1           | -                    |
| L8    | SUS  | W+D1+T1+P1+U2           | -                    |
| L9    | SUS  | W+D1+T1+P1+U3           | -                    |
| L10   | SUS  | W+D2+T2+P2+U1           | -                    |
| L11   | SUS  | W+D2+T2+P2+U2           | -                    |
| L12   | SUS  | W+D2+T2+P2+U3           | -                    |

| LINHA | TIPO | CASO DE<br>CARREGAMENTO | COMBINAÇÃO/DESCRIÇÃO |
|-------|------|-------------------------|----------------------|
| L13   | SUS  | L7-L2                   | +U1                  |
| L14   | SUS  | L8-L2                   | +U2                  |
| L15   | SUS  | L9-L2                   | +U3                  |
| L16   | SUS  | L10-L2                  | +U1                  |
| L17   | SUS  | L11-L2                  | +U2                  |
| L18   | SUS  | L12-L2                  | +U3                  |
| L19   | EXP  | L2-L4                   | ALGÉBRICO            |
| L20   | EXP  | L3-L4                   | ALGÉBRICO            |
| L21   | SUS  | +L13+L14+L15            | ALGÉBRICO            |
| L22   | SUS  | +L13+L14-L15            | ALGÉBRICO            |
| L23   | SUS  | +L13-L14+L15            | ALGÉBRICO            |
| L24   | SUS  | +L13-L14-L15            | ALGÉBRICO            |
| L25   | SUS  | -L13+L14+L15            | ALGÉBRICO            |
| L26   | SUS  | -L13+L14-L15            | ALGÉBRICO            |
| L27   | SUS  | -L13-L14+L15            | ALGÉBRICO            |
| L28   | SUS  | -L13-L14-L15            | ALGÉBRICO            |
| L29   | SUS  | +L16+L17+L18            | ALGÉBRICO            |
| L30   | SUS  | +L16+L17-L18            | ALGÉBRICO            |
| L31   | SUS  | +L16-L17+L18            | ALGÉBRICO            |
| L32   | SUS  | +L16-L17-L18            | ALGÉBRICO            |
| L33   | SUS  | -L16+L17+L18            | ALGÉBRICO            |
| L34   | SUS  | -L16+L17-L18            | ALGÉBRICO            |
| L35   | SUS  | -L16-L17+L18            | ALGÉBRICO            |
| L36   | SUS  | -L16-L17-L18            | ALGÉBRICO            |
| L37   | OCC  | L21                     | SRSS                 |
| L38   | OCC  | L29                     | SRSS                 |

Representam fatores de não linearidades na análise do sistema de tubulações apresentado na Figura 51:

- fator de atrito entre o suporte da tubulação e a estrutura;

- consideração de restrições em apenas um sentido, como por exemplo, apenas uma restrição vertical "+Y", ao invés de uma restrição "+/-Y";

- perda de apoio da tubulação - ocorre quando, devido à proximidade com um trecho vertical e à temperatura, a tubulação acaba não tendo contato com o suporte mais próximo.

Vale ressaltar, entretanto que, em atendimento ao apêndice G da norma DNV RP D-101 no sentido de que o resultado da raiz quadrada do somatório dos quadrados das tensões originadas pelas acelerações (SRSS – *Square Root Sum of Squares*) deve ser levado em consideração. A linha L20 da Tabela 50 demonstra esse caso. Diferentemente do que recomenda esta mesma norma, o resultado de tensão foi comparado à tensão admissível na temperatura de projeto do material da tubulação ( $S_H$ ), enquanto que a norma ASME B31.3 permite um acréscimo de 1,33 a esta tensão, por abordar este caso como ocasional.

A Tabela 52 traz os resultados de tensões encontrados para os casos das acelerações combinadas. Os casos listados na primeira coluna fazem referência à Tabela 50. Observa-se que os casos L14 e L17 apresentaram maiores níveis de tensões para o nó 1469, indicado na Figura 5.22.

| CASO | TENSÃO (KPa) | NÓ   |
|------|--------------|------|
| L12  | 48505,0      | 2689 |
| L13  | 47763,1      | 2689 |
| L14  | 49232,4      | 1469 |
| L15  | 49099,8      | 1469 |
| L16  | 49099,8      | 1469 |
| L17  | 49232,4      | 1469 |
| L18  | 47763,1      | 2689 |
| L19  | 48505,0      | 2689 |

Tabela 52 Resultados de tensões para as acelerações combinadas.



Fig. 52 Detalhe para o nó 1469, correspondente ao ponto médio da curva. Fonte: (S/D).

Os casos de fadiga para as acelerações combinadas são dispostos conforme a Tabela 53. Os casos de carregamento listados na terceira coluna fazem referência à Tabela 50. Um total de 18 milhões de ciclos para cada uma das 8 combinações de acelerações são considerados, totalizando 144 milhões de ciclos.

| LINHA | TIPO    | CASO DE<br>CARREGAMENTO | COMBINAÇÃO | Nº CICLOS  |
|-------|---------|-------------------------|------------|------------|
| L59   | FAT     | L2                      | ALGÉBRICO  | 7.000      |
| L60   | FAT     | L12                     | ALGÉBRICO  | 18.000.000 |
| L61   | FAT L13 |                         | ALGÉBRICO  | 18.000.000 |
| L62   | FAT     | L14                     | ALGÉBRICO  | 18.000.000 |
| L63   | FAT     | L15                     | ALGÉBRICO  | 18.000.000 |
| L64   | FAT     | L16                     | ALGÉBRICO  | 18.000.000 |
| L65   | FAT     | L17                     | ALGÉBRICO  | 18.000.000 |
| L66   | FAT     | L18                     | ALGÉBRICO  | 18.000.000 |
| L67   | FAT     | L19                     | ALGÉBRICO  | 18.000.000 |
| L68   | FAT     | L20                     | ALGÉBRICO  | 18.000.000 |

 Tabela 53 -Casos de carregamentos de fadiga para as acelerações combinadas.

O recurso de combinação máxima (MAX) do *software* identifica o caso de maior tensão entre os casos das acelerações combinadas (L12 ao L19). Dessa forma, todos os ciclos de repetições que o sistema estará submetido deverão estar atrelados a este caso máximo, conforme demonstrado na Tabela 54.

Tabela 54 - Caso de carregamento – Aceleração crítica.

| LINHA | TIPO | CASO DE CARREGAMENTO            | COMBINAÇÃO | N° CICLOS   |
|-------|------|---------------------------------|------------|-------------|
| L59   | FAT  | L2                              | ALGÉBRICO  | 7.000       |
| L60   | FAT  | L12,L13,L14,L15,L16,L17,L18,L19 | MÁX        | 144.000.000 |

A consideração do caso crítico de aceleração para o procedimento simplificado de análise de fadiga é mais conservativa, conforme observado na Tabela 55, e reduz o número de casos de carregamentos em aproximadamente 110 linhas.

### Tabela 55 Comparativo de resultados dos danos.

| CASO                 | CASO DANO |      |
|----------------------|-----------|------|
| 8 COMBINAÇÕES        | 0,15      | 1469 |
| L <sub>CRÍTICO</sub> | 0,20      | 1469 |

### 5.1.6 Arranjo com curva 1,5D X curva 5D

Neste estudo de caso buscou-se identificar a relação entre as variações do raio de uma conexão do tipo curva com o dano acumulado. Originalmente, o sistema de tubulações do estudo de caso aqui abordado adota curvas de raio longo, ou seja, igual a 1,5 vezes o seu diâmetro nominal, mais comumente utilizado em arranjos de tubulação.

Curvas com raio de curvatura de 5D são bastante utilizadas em sistemas pigáveis devido ao fato destas oferecerem menores restrições à passagem de elementos de limpeza ou inspeção na tubulação. O valor do raio destas curvas corresponde a 5 vezes o diâmetro nominal da tubulação. A Figura 53 mostra o sistema de tubulações original composto por linhas que transportam água com, principalmente, 4" de diâmetro nominal, fabricadas em aço carbono API 5L Grau B, com espessuras de parede de 6,02 mm.



Fig. 53 Imagem isométrica do arranjo geral do sistema analisado. Detalhe para a curva do nó 80 de 4" de diâmetro nominal abordada neste estudo de caso. Fonte: (S/D).

A Figura 54 apresenta a aplicação da curva com 5 vezes o diâmetro com a modificação da curva no nó 80.



Fig. 54 Detalhe da diferença de raio de curvatura entre a curva de raio longo (à esquerda) e a curva 5D (à direita) representada no nó 80 da análise de flexibilidade para a linha com 4" de diâmetro nominal. Fonte: (S/D).

### 5.1.6.1 Determinação dos fatores SIF e K das curvas

Importante ressaltar que não há variação na determinação dos fatores intensificadores de tensões e flexibilidade entre as normas ASME B31.3 e ASME B31.J para a conexão do tipo curva forjada. A variação destes fatores depende exclusivamente do dimensionamento da curva.

De acordo com o apêndice D da norma ASME B31.3 de 2018, os fatores intensificadores de tensões e flexibilidade de uma curva forjada podem ser calculados a partir das seguintes equações.

|                                                    | Flevibility      | Stress Inter<br>Factor [Not     | nsification<br>es (1), (2)] | Flevihility                     |                                 |  |
|----------------------------------------------------|------------------|---------------------------------|-----------------------------|---------------------------------|---------------------------------|--|
| Description                                        | Factor,<br>k     | Out-of-Plane,<br>i <sub>o</sub> | In-Plane,<br>i <sub>i</sub> | Characteristic,<br>h            | Sketch                          |  |
| Welding elbow or pipe bend<br>[Notes (1), (3)-(6)] | <u>1.65</u><br>h | $\frac{0.75}{h^{2/3}}$          | $\frac{0.9}{h^{2/3}}$       | $\frac{\overline{T}R_1}{r_2^2}$ | $\overline{r_1}^{\overline{T}}$ |  |

#### Table D300 Flexibility Factor, k, and Stress Intensification Factor, i

Fig. 55 Equações para obtenção dos fatores intensificadores de tensão e flexibilidade de uma curva forjada (ASME B31.3, 2018). Fonte: S/D).

Tabela 56 Determinação dos fatores de flexibilidade e intensificação de tensões (SIF) para curva forjada.

| FATOR   | CURVA |      |  |  |  |
|---------|-------|------|--|--|--|
|         | 1,5D  | 5D   |  |  |  |
| K       | 5,27  | 1,58 |  |  |  |
| SIF IN  | 1,95  | 1,0  |  |  |  |
| SIF OUT | 1,62  | 1,0  |  |  |  |

Fonte: (ASME B31.3, 2018).

Quanto maior o raio da curva, menor será a flexibilidade, e também, menor será a intensificação de tensões. De acordo com a norma ASME B31.3, o menor fator, seja ele qual for, deverá ser 1,0.

### 5.1.6.2 Resultados

Observa-se pelos resultados encontrados na Fig. 56 que, ao ser aumentado o raio de curvatura deste componente, este se torna mais rígido e o processo de fadiga é significativamente minimizado, devido à redução dos fatores de flexibilidade e intensificadores de tensões dentro e fora do plano da curva.

Apesar dos resultados, é importante ressaltar que uma menor flexibilidade gera maiores carregamentos, que serão transmitidos aos suportes e aos bocais dos equipamentos, os quais devem ser avaliados.



Fig. 56 Comparativo de resultados de dano acumulado extraído do software de análise de tensões CAESAR II. Fonte: (S/D).

Importante atentar também para a variação nos resultados de frequência natural do sistema. Como observado anteriormente, a curva de maior raio proporciona maior rigidez, logo, a frequência natural do sistema será aumentada, já que temos menores amplitudes de vibrações. A Tabela 57 resume as variações de resultados de dano acumulado e frequência natural de vibração.

Tabela 57 Comparativo de resultados – Curva 1,5D x 5D.

| Raio de<br>Curvatura | Nó | Dano Acumulado       | Frequência Natural<br>(Hz) |
|----------------------|----|----------------------|----------------------------|
| 1,5D                 | 79 | 0,08                 | 4,03                       |
| 5D                   | 79 | 0,00 (vida infinita) | 5,10                       |

### 5.1.7 Comparativo entre configurações de suportação de sistemas de tubulações

A *suportação* das linhas é um aspecto que influencia diretamente a vida à fadiga de um sistema de tubulações. Quanto mais adequadamente suportado se encontrar o arranjo de tubulações, menores serão os efeitos causados pelas acelerações devido aos movimentos do FPSO e menores também serão as amplitudes de vibrações e, consequentemente, maior a frequência natural daquele sistema. Assim, neste estudo de caso, foi realizado um comparativo de danos do mesmo sistema de tubulações de distribuição de água apresentado no estudo de

caso 5.1.5, conforme mostra a Fig. 57, sendo considerado ora com *suportação* adequada, ora com *suportação* inadequada.



Fig. 57 Vista isométrica do arranjo geral do sistema de tubulações extraído do *software* CAESAR II. Fonte: (S/D).

A Figura 58 a seguir apresenta o arranjo adequadamente suportado, incluindo a indicação dos suportes originalmente considerados no arranjo de tubulações. Verifica-se de acordo com a Tabela 58 que o dano acumulado do sistema atende ao critério de análise de fadiga do projeto, cujo valor máximo é de 1,0.



Fig. 58 Detalhe da tomada adequadamente suportada – Cenário 1. Fonte: (S/D).

Na Figura 59 é demonstrado um segundo cenário de análise, no qual é removida a trava localizada no "*trunnion*" soldado à curva forjada representada pelo nó 1470.



Fig. 59 Suporte tipo trava removido do trunnion soldado à curva forjada – Cenário 2. Fonte: (S/D).

Um terceiro cenário foi avaliado, agora contemplando além da remoção da trava do cenário 2, a remoção da guia próximo ao trecho vertical do arranjo, logo na interligação com a linha tronco, conforme pode ser observado na Figura 60.



Fig. 60 Suporte tipo trava e guia removidos da tomada de água - Cenário 3. Fonte: (S/D).

Com as alterações contempladas nos cenários 2 e 3, o dano acumulado máximo deixou de ocorrer na curva que contém o *trunnion* soldado (nó 1469). Nestes casos, o componente mais solicitado à fadiga passou a ser a conexão do tipo *weldolet*, entre a linha tronco de 18" e a derivação de 8". Observa-se que, de um cenário para o outro, o aumento do dano foi da ordem de 50%. Apesar disso, a frequência natural para o primeiro modo de vibração do sistema, não apresentou alteração. As Figuras 61 e 62 demonstram o aumento do dano entre estes cenários, bem como a indicação da conexão mais exigida.

| CAESAR II CUMULATIVE U          | SAGE                          |                            |                |            |                  |                |
|---------------------------------|-------------------------------|----------------------------|----------------|------------|------------------|----------------|
| Load Case                       | Cycles                        | From Allow.<br>Node Cycles | Usage<br>Ratio | To<br>Node | Allow.<br>Cycles | Usage<br>Ratic |
| **** CUM                        | ULATIVE USAGE E               | VALUATION PAS              | SED            |            |                  |                |
| HIGHEST USAGE<br>MINIMUM ALLOWA | RATIO IS 0.2<br>BLE CYCLES IS | 9 AT NODE<br>51795028      | 260            |            |                  |                |

| CAESAR II | CUMUL2             | ATIVE USA            | GE               |               |            |               |                  |                |          |           |                  |                |
|-----------|--------------------|----------------------|------------------|---------------|------------|---------------|------------------|----------------|----------|-----------|------------------|----------------|
| Load Case |                    |                      |                  | Cycle         | F:<br>s No | rom<br>ode    | Allow.<br>Cycles | Usage<br>Ratio | e<br>o N | To<br>ode | Allow.<br>Cycles | Usage<br>Ratio |
|           | ****               | CUMUI                | ATIVE            | USAGE         | EVA        | LUAT          | ION PAS          | SED            |          |           |                  |                |
|           | HIGHEST<br>MINIMUM | USAGE RA<br>ALLOWABI | TIO IS<br>E CYCI | S O<br>LES IS | .44 1      | AT N(<br>5179 | DDE :<br>5028    | 260            |          |           |                  |                |

Fig. 61 Na parte superior da figura, observa-se o dano acumulado para o Cenário 2, enquanto que a parte inferior refere-se ao Cenário 3. Fonte: (S/D).



Fig. 62 Detalhe da conexão entre o header e a derivação. Fonte: (S/D).

A Tabela 58 traz um resumo dos resultados dos danos acumulados, bem como a contribuição do dano de cada fonte de fadiga, além das frequências naturais de vibração de todos os cenários apresentados. Observa-se que o sistema possui vida infinita quanto à fadiga térmica.

| Suportação<br>do Sistema | Nó   | Fonte de<br>Fadiga | Dano | Dano<br>Acumulado | Frequência<br>Natural (Hz) |
|--------------------------|------|--------------------|------|-------------------|----------------------------|
| Conómio 1                | -    | Térmica            | 0,00 | 0.15              | 5 20                       |
| Cenario I                | 1469 | Aceleração         | 0,15 | 0,15              | 5,20                       |
| Conómio 2                | -    | Térmica            | 0,00 | 0.20              | 1 72                       |
| Cenario 2                | 260  | Aceleração         | 0,29 | 0,29              | 1,75                       |
| Cománia 2                | -    | Térmica            | 0,00 | 0.42              | 1 72                       |
| Cenario 3                | 260  | Aceleração         | 0,43 | 0,43              | 1,75                       |

Tabela 58 Comparativo de resultados dos cenários estudados.

### 5.1.8 Sistema com peso da válvula triplicado

Conforme já conhecido, massas suspensas correspondem a pontos críticos no processo de fadiga. Assim, este estudo de caso busca avaliar a influência da massa dos acessórios da tubulação na intensificação da fadiga, ou seja, avaliar o efeito de grandes massas concentradas em sistemas de tubulações submetido a acelerações.

O sistema avaliado neste estudo de caso é o mesmo do estudo de caso 5.1.3. Corresponde às tubulações que se conectam aos *risers* de produção, que são linhas rígidas ou flexíveis que transportam hidrocarbonetos ou fluidos de injeção desde o poço até a plataforma, e vice-versa.



Fig. 63 Arranjo geral do sistema analisado extraído do software CAESAR II. Fonte: (S/D).

Conforme destacado na Figura 63, tomadas de instrumentação são necessárias para permitir a operação do sistema. Neste caso, a tomada possui diâmetro nominal de 1", derivando de uma linha tronco de 8".

Na Figura 64, observa-se o nó de ocorrência do maior dano identificado para a análise com o peso da válvula de 1" corretamente considerado. Verifica-se que o local mais solicitado quanto à fadiga é a solda do flange, no nó 3020 previamente indicado.



Fig. 64 Destaque para o nó 3020, ponto de ocorrência do maior dano da análise. Fonte: (S/D).

Para grandes variações entre os diâmetros entre a linha tronco e a derivação, é comum serem utilizadas conexões do tipo *weldolet* soldadas. Primeiramente, o tubo tronco é cortado de acordo com o dimensional da conexão que é posicionada e ponteada no local. Em seguida, o *weldolet* é soldado em toda a sua volta com penetração total e, finalmente, um cordão de solda de recobrimento é realizado, conforme recomenda a norma ASME B31.3.



Fig. 65 Conexão tipo weldolet soldada (MSS\_SP\_97, 2012). Fonte: (S/D).

O peso da válvula destacada em amarelo na Figura 66 foi aumentado em três vezes. Além disso, a figura traz a indicação do nó 3065 do *weldolet* soldado à linha tronco.



Fig. 66 Detalhe da tomada para a instrumentação de 1" derivando da linha tronco de 8". Fonte: (S/D).

A Tabela 5.35 apresenta um resumo dos resultados encontrados entre os dois cenários avaliados neste estudo de caso. Verifica-se um aumento significativo do dano que passou a ocorrer exatamente no *weldolet* da tomada de 1". Além disso, observa-se a diminuição da frequência natural de vibração.

### 5.1.8.1 - Comparativos de Resultados

A Tabela 59 apresenta os resultados de dano acumulado para os dois casos analisados.

Tabela 59 Comparativo de resultados analisados.

| Suportação do Sistema              | Nó   | Dano Acumulado | Frequência Natural<br>(Hz)    |
|------------------------------------|------|----------------|-------------------------------|
| Peso Válvula Normal                | 3020 | 0,48           | 8,33 – 1º modo<br>(derivação) |
| Peso Válvula<br>multiplicado por 3 | 3065 | 0,80           | 7,14 – 1º modo<br>(derivação) |

Normalmente existe uma preocupação em evitar a fadiga de pequenas derivações causadas pelo fenômeno de ressonância, em que a vibração da linha tronco normalmente excita o primeiro modo natural de vibração da derivação em frequências bem mais elevadas do que a frequência das ondas do mar. Este estudo de caso mostra que pequenas derivações podem estar sujeitas a fadiga de alto ciclo e baixa frequência, causadas simplesmente pelo movimento do FPSO.

### 5.1.9 Sistema conforme norma ASME B31.3 e norma ASME B31.J

Este estudo de caso busca comparar os resultados de danos de um acessório do tipo "tê de redução", fabricado conforme norma ASME B16.9, com a utilização de fatores intensificadores de tensões segundo as normas ASME B31.3 e ASME B31.J, com o objetivo de analisar os efeitos dos novos fatores da ASME B31.J. Assim como apresentado no estudo de caso 5.1.5, este sistema de tubulações é responsável pela distribuição de água no módulo.



Fig. 67 Vista isométrica do arranjo geral do sistema de tubulações extraído do software CAESAR II. Fonte: (S/D).

O dimensional da conexão tipo "tê" de redução representado na análise de flexibilidade pelo nó 540 está informado na Tabela 60.

# Tabela 60 Dimensional da conexão.

| Linha     | Diâmetro | Espessura |
|-----------|----------|-----------|
| Tronco    | 8"       | 6,35 mm   |
| Derivação | 6"       | 7,11 mm   |


Fig. 68 Detalhe do "tê" de redução de 8"x 6" indicado em amarelo e representado pelo nó 540 da análise de flexibilidade (CAESAR II, 2014). Fonte: (S/D).

O maior dano da análise, considerando os fatores intensificadores de tensões do "tê" de redução conforme a norma ASME B31.3, ocorreu próximo a um *by-pass* vertical desprovido de *suportação* no trecho mais elevado da tubulação, o que propicia o processo de fadiga.

5.1.9.1 - Determinação dos fatores conforme ASME B31.3.

A Figura 69 foi extraída do *output* do *software* CAESAR II e traz os fatores intensificadores de tensões considerados pelo programa, conforme o código ASME B31.3. Observa-se que de acordo com esta norma, os fatores são os mesmos tanto para a linha tronco quanto para a derivação.

| Miscel | laneous | REPORT, Miscell | aneous Dat | a Items    |         |         |
|--------|---------|-----------------|------------|------------|---------|---------|
|        |         | HEADER          | HEADER     | Eff BRANCH | BRANCH  | BRANCH  |
| TEE    | TYPE    | SIFo            | SIFi       | THICK      | SIFo    | SIFi    |
|        |         | (these values   | per Code)  | mm.        |         |         |
| 5      | 0 3     | 4.22223         | 3.41667    | 6.35000    | 4.22223 | 3.41667 |
| 7      | 0 3     | 4.22223         | 3.41667    | 6.35000    | 4.22223 | 3.41667 |
| 8      | 0 3     | 4.22223         | 3.41667    | 6.35000    | 4.22223 | 3.41667 |
| 11     | 0 5     | 4.04986         | 4.04986    | 6.35000    | 4.04986 | 4.04986 |
| 12     | 0 3     | 4.22223         | 3.41667    | 6.35000    | 4.22223 | 3.41667 |
| 20     | 0 3     | 3.22216         | 2.66662    | 0.00000    | 3.22216 | 2.66662 |
| 26     | 0 3     | 3.22216         | 2.66662    | 0.00000    | 3.22216 | 2.66662 |
| 54     | 0 3     | 2.77126         | 2.32845    | 6.35000    | 2.77126 | 2.32845 |
| 66     | 0 3     | 2.77126         | 2.32845    | 0.00000    | 2.77126 | 2.32845 |
| 77     | 0 3     | 3.22216         | 2.66662    | 0.00000    | 3.22216 | 2.66662 |

Fig. 69 Detalhe dos fatores SIF's considerados para a linha tronco e derivação pelo software CAESAR II, conforme a norma ASME B31.3. Fonte: (S/D).

5.1.9.2 - Determinação dos SIF's conforme ASME B31.J

A fim de avaliar possíveis divergências entre resultados de fatores intensificadores de tensões, estes foram calculados conforme novas equações contempladas nas normas ASME B31.J. Na Tabela 61 é apresentado um comparativo dos resultados de fatores intensificadores de tensões obtidos para a norma ASME B31.3 e ASME B31.J.

| Fator               | ASME B31.3 | ASME B31.J |
|---------------------|------------|------------|
| Tronco - SIF IN     | 2,32       | 2,03       |
| Tronco - SIF OUT    | 2,77       | 1,00       |
| Derivação - SIF IN  | 2,32       | 2,22       |
| Derivação - SIF OUT | 2,77       | 2,59       |

Tabela 61 Comparativo entre SIF's (ASME B31.3 x ASME B31.J).

5.1.9.3 - Aplicação dos fatores determinados de acordo com a ASME B31.J

Por se tratar de um "tê" de redução, os valores de SIF de cada diâmetro devem ser computados no *software* de forma individual. Na Figura 70 são mostrados os valores de *SIF* para a linha tronco, enquanto a Figura 71 traz os valores de *SIF* computados para a derivação.



Fig. 70 Input de fatores no software conforme ASME B31.J para a linha tronco (CAESAR II, 2014).

| Node:      | 540   |        |
|------------|-------|--------|
| Туре:      |       | ~      |
|            | SIF:  | Index: |
| In-Plane:  | 2.220 |        |
| Out-Plane: | 2.590 |        |
| Torsion:   | 2.290 |        |
| Axial:     |       |        |

Fig. 71 Input de fatores no software conforme ASME B31.J para a derivação (CAESAR II, 2014).

5.1.9.4 - Comparativos entre danos por fadiga

Conforme mostra a Tabela 62, conclui-se que a atualização do fator intensificador de tensão conforme a norma ASME B31.J levou a uma redução do resultado do dano acumulado na conexão representada pelo nó 540 da análise de flexibilidade, indicando que este componente não terá problemas de fadiga ao longo da vida útil do projeto.

| <i>Suportação</i> do<br>Sistema | Nó  | Dano Acumulado       |
|---------------------------------|-----|----------------------|
| <b>ASME B31.3</b>               | 540 | 0,12                 |
| ASME B31.J                      | 540 | 0,00 – Vida Infinita |

#### Tabela 62 Comparativo de resultados analisados.

Importante ressaltar que a alteração demonstrada neste estudo de caso pode parecer um conservadorismo da norma ASME B31.3, devido à obtenção de SIF's maiores do que os da ASME B31.J. Entretanto, a alteração identificada poderia ter ocorrido no sentido de aumentar o fator SIF, e, consequentemente, o dano à fadiga, o que leva à necessidade de que esta atualização seja realizada em todos os sistemas de tubulações suscetíveis a muitos ciclos de carregamentos, como é o caso das tubulações *offshore*.

## 5.1.10 Combinações de Casos de Carregamento – Acelerações (efeito da não linearidade)

Este estudo de caso busca identificar a variação de resultados de tensões encontradas em diferentes combinações de casos de carregamentos devido aos efeitos de não linearidades. Uma vez combinados de maneira inadequada, a ordenação dos casos de carregamentos influencia o resultado de tensões de uma análise de flexibilidade. Alguns exemplos de efeitos não lineares correspondem a:

- fator de atrito entre o suporte da tubulação e a estrutura;

- consideração de folga (*gap*) que permitem a tubulação um determinado deslocamento até tocar o suporte;

 - consideração de restrições em apenas um sentido, como por exemplo, uma restrição vertical +Y, ao invés de uma restrição +/-Y;

- perda de apoio da tubulação - ocorre quando, devido à proximidade com um trecho vertical e a temperatura, a tubulação acaba não tendo contato com o suporte mais próximo.

Um exemplo de ordenação inadequada de casos de carregamento é descrito na Tabela 63.

|    | LOAD CASES | STRESS<br>TYPE | LOAD<br>CYCLES | DESCRIPTION       |
|----|------------|----------------|----------------|-------------------|
| L1 | WW+HP      | HYD            | -              | HYDROSTATIC TEST  |
| L2 | W+T1+P1    | OPE            | -              | DESIGN CONDITION  |
| L3 | W+T2+P2    | OPE            | -              | OPERATION CONTION |
| L4 | W+P1       | SUS            | -              | SUSTAINED LOADS   |
| L5 | W+P2       | SUS            | -              | SUSTAINED LOADS   |
| L6 | WIN1       | SUS            | -              | WIND CONDITION 1  |

Tabela 63 Caso de carregamento suscetível ao efeito de não linearidades.

|             | LOAD CASES | STRESS<br>TYPE | LOAD<br>CYCLES | DESCRIPTION                                                |
|-------------|------------|----------------|----------------|------------------------------------------------------------|
| L7          | WIN2       | SUS            | -              | WIND CONDITION 2                                           |
| L8          | U1         | SUS            | -              | ACCELERATION IN DIRECTION X                                |
| L9          | U2         | SUS            | -              | ACCELERATION IN DIRECTION Y                                |
| L10         | U3         | SUS            | -              | ACCELERATION IN DIRECTION Z                                |
| L11         | L2-L4      | EXP            | -              | THERMICAL DESIGN CONDITION                                 |
| L12         | L3-L5      | EXP            | -              | THERMICAL OPERATION CONDITION                              |
| L13         | L11-L12    | EXP            | -              | FULL STRESS RANGE                                          |
| L14         | L8+L9+L10  | SUS            | -              | _                                                          |
| L15         | L8+L9-L10  | SUS            | -              | _                                                          |
| L16         | L8-L9+L10  | SUS            | -              | _                                                          |
| L17         | L8-L9-L10  | SUS            | -              | COMBINED ACCELERATIONS                                     |
| L18         | -L8+L9+L10 | SUS            | -              |                                                            |
| L19         | -L8+L9-L10 | SUS            | -              | _                                                          |
| L20         | -L8-L9+L10 | SUS            | -              | _                                                          |
| L21         | -L8-L9-L10 | SUS            | -              |                                                            |
| L22         | L8+L9+L10  | SUS            | -              | COMBINED ACCELERATIONS (SRSS METHOD)                       |
| L23         | L2+L6      | OPE            | -              | DESIGN LOADS FOR RESTRAINT AND                             |
| L24         | L3+L6      | OPE            | -              | EQUIPMENT NOZZLES, COMBINATION:                            |
| L25         | L2+L7      | OPE            | -              | WEIGHT, PRESSURE, TEMPERATURE, NOZZLE                      |
| L26         | L3+L7      | OPE            | -              | DISPLACEMENTS AND WIND.                                    |
| L27         | L23+L14    | OPE            | -              | -                                                          |
| L28         | L23+L15    | OPE            | -              | -                                                          |
| L29         | L23+L16    | OPE            | -              | -                                                          |
| L30         | L23+L17    | OPE            | -              | -                                                          |
| L31         | L23+L18    | OPE            | -              | -                                                          |
| L32         | L23+L19    | OPE            | -              | -                                                          |
| L33         | L23+L20    | OPE            | -              | -                                                          |
| L34         | L23+L21    | OPE            | -              | -                                                          |
| L35<br>I 36 | L24+L14    | OPE            | -              | -                                                          |
| L30<br>I 37 | L24+L15    | OPE            | -              | -                                                          |
| L37         | <u> </u>   | OPE            |                | -                                                          |
| L30         | L24+L18    | OPE            | -              | -                                                          |
| L3>         | L24+L19    | OPE            | -              | -                                                          |
| L41         | L24+L20    | OPE            | _              | -                                                          |
| L42         | L24+L21    | OPE            | -              | DESIGN LOADS FOR RESTRAINT AND                             |
| L43         | L25+L14    | OPE            | -              | EQUIPMENT NOZZLES, COMBINATION:                            |
| L44         | L25+L15    | OPE            | -              | WEIGHT, PRESSURE, TEMPERATURE, NOZZLE                      |
| L45         | L25+L16    | OPE            | -              | DISPLACEMENTS, WIND AND                                    |
| L46         | L25+L17    | OPE            | -              | ACCELERATIONS                                              |
| L47         | L25+L18    | OPE            | -              | -                                                          |
| L48         | L25+L19    | OPE            | -              | _                                                          |
| L49         | L25+L20    | OPE            | -              |                                                            |
| L50         | L25+L21    | OPE            | -              |                                                            |
| L51         | L26+L14    | OPE            | -              |                                                            |
| L52         | L26+L15    | OPE            | -              | _                                                          |
| L53         | L26+L16    | OPE            | -              | _                                                          |
| L54         | L26+L17    | OPE            | -              |                                                            |
| L55         | L26+L18    | OPE            | -              | 4                                                          |
| L56         | L26+L19    | OPE            | -              | -                                                          |
| L57         | L26+L20    | OPE            | -              | -                                                          |
| L58         | L26+L21    | OPE            | -              |                                                            |
| L59         | L4+L22+L6  | OCC            | -              | WEIGHT, PRESSURE, ACCELERATIONS AND<br>WIND IN CONDITION 1 |
| L60         | L4+L22+L7  | OCC            | -              | WEIGHT, PRESSURE, ACCELERATIONS AND<br>WIND IN CONDITION 2 |

|     | LOAD CASES                                                                       | STRESS<br>TYPE | LOAD<br>CYCLES | DESCRIPTION                        |
|-----|----------------------------------------------------------------------------------|----------------|----------------|------------------------------------|
| L61 | L2                                                                               | FAT            | 7000           |                                    |
| L62 | L14                                                                              | FAT            | 18000000       |                                    |
| L63 | L15                                                                              | FAT            | 18000000       |                                    |
| L64 | L16                                                                              | FAT            | 1800000        |                                    |
| L65 | L17                                                                              | FAT            | 1800000        | CASES FOR ACCUMULATIVE FATIGUE     |
| L66 | L18                                                                              | FAT            | 1800000        | CHECK                              |
| L67 | L19                                                                              | FAT            | 1800000        |                                    |
| L68 | L20                                                                              | FAT            | 1800000        |                                    |
| L69 | L21                                                                              | FAT            | 18000000       |                                    |
| L70 | L27,L28,L29,L30,L3<br>1,L32,L33,L34,L35,<br>L36,L37,L38,L39,L4<br>0,L41, L42,L43 | OPE            | -              |                                    |
| L71 | L44,L45,L46,L47,L4<br>8,L49,L50,L51,L52,<br>L53,L54,L55,L56,L5<br>7,L58          | OPE            | -              | MAXIMUM OF THE COMBINED LOAD CASES |

Observa-se que os vetores das acelerações foram considerados isoladamente nos casos L8, L9 e L10, e, posteriormente, combinados entre si com alternância de sinais nos casos de carregamentos do L14 ao L21, ao contrário do que entende-se ser a maneira mais adequada de combinação de casos de carregamentos apresentada na Tabela 17 do item 2.1.2.7 desta dissertação.

A fim de determinar as divergências de resultados para os dois cenários, neste estudo de caso foi avaliado o resultado de três diferentes análises, nas quais os casos de carregamento foram combinados, ora da maneira menos suscetível às imprecisões de resultados devido aos efeitos não lineares, ora da maneira mais suscetível às imprecisões de resultados devido aos efeitos não lineares. Importante registrar que combinações de casos de carregamentos inadequadas foram, inclusive, identificadas nos projetos de engenharia já avaliados nos estudos de caso anteriores.

A primeira análise contempla todas as linhas que fazem parte do sistema de processo do módulo M-01 de determinado FPSO, conforme apresentado na Figura 72.



Fig. 72 Vista isométrica do sistema de processo – Análise 1 (CAESAR II, 2014). Fonte: (S/D).

O sistema de *flare* de baixa temperatura foi escolhido e é contemplado na segunda análise abordada neste item, conforme a Figura 73.



Fig. 73 Vista isométrica do sistema de flare de baixa – Análise 2 (CAESAR II, 2014). Fonte: (S/D).

A terceira análise corresponde ao sistema de *flare* de alta pressão do módulo M-04, conforme Figura 74.



Fig. 74 Vista isométrica do sistema de flare de alta pressão – Análise 3 (CAESAR II, 2014). Fonte: (S/D).

Os casos de carga L19 ao L27 das Tabelas 63, 64 e 65 correspondem à combinação não adequada dos casos de carregamento, ou seja, bastante suscetíveis às influências das não linearidades do cálculo. Os casos de carregamentos L83 ao L91 representam a combinação adequada dos casos. As Tabelas 64, 65 e 66, trazem as variações de resultados para o caso SUS (sustentação) para as três análises realizadas.

|      | ANÁLISE 1      |      |      |                |       |          |
|------|----------------|------|------|----------------|-------|----------|
| NĂ   | ÃO RECOMEN     | DADA |      | ADA            | 0/ DE |          |
| CASO | % DE<br>TENSÃO | NÓ   | CASO | % DE<br>TENSÃO | NÓ    | VARIAÇÃO |
| L19  | 36,3           | 3989 | L83  | 36,8           | 3989  | 0,5      |
| L20  | 40,1           | 4389 | L84  | 31,5           | 465   | 8,6      |
| L21  | 38,5           | 125  | L85  | 64,6           | 125   | 26,1     |
| L22  | 40,8           | 3989 | L86  | 59,0           | 465   | 18,2     |
| L23  | 40,8           | 3989 | L87  | 48,6           | 125   | 7,8      |
| L24  | 38,5           | 125  | L88  | 60,1           | 125   | 21,6     |
| L25  | 40,1           | 4389 | L89  | 34,7           | 4389  | 5,4      |
| L26  | 36,3           | 3989 | L90  | 58,7           | 465   | 22,4     |

Tabela 64 Comparativo de resultados de tensões - Análise 1.

| ANÁLISE 1       |                |     |             |                |     |          |
|-----------------|----------------|-----|-------------|----------------|-----|----------|
| NÃO RECOMENDADA |                |     | RECOMENDADA |                |     | 0/ DE    |
| CASO            | % DE<br>TENSÃO | NÓ  | CASO        | % DE<br>TENSÃO | NÓ  | VARIAÇÃO |
| L27             | 29,7           | 125 | L91         | 41,8           | 125 | 12,1     |

Tabela 65 Comparativo de resultados de tensões - Análise 2.

|      | ANALISE 2      |      |      |                |     |                  |  |
|------|----------------|------|------|----------------|-----|------------------|--|
| NĂ   | ÃO RECOMEN     | DADA |      | RECOMENDADA    |     |                  |  |
| CASO | % DE<br>TENSÃO | NÓ   | CASO | % DE<br>TENSÃO | NÓ  | % DE<br>VARIAÇÃO |  |
| L19  | 17,8           | 350  | L83  | 18,0           | 350 | 0,2              |  |
| L20  | 17,4           | 125  | L84  | 20,4           | 125 | 3,0              |  |
| L21  | 18,0           | 720  | L85  | 18,5           | 125 | 0,5              |  |
| L22  | 17,0           | 125  | L86  | 17,1           | 125 | 0,1              |  |
| L23  | 17,0           | 125  | L87  | 16,9           | 125 | 0,1              |  |
| L24  | 18,0           | 720  | L88  | 20,7           | 125 | 2,7              |  |
| L25  | 17,4           | 125  | L89  | 18,4           | 125 | 1,0              |  |
| L26  | 17,8           | 350  | L90  | 18,0           | 350 | 0,2              |  |
| L27  | 16,2           | 125  | L91  | 17,7           | 125 | 1,5              |  |

Tabela 66 Comparativo de resultados de tensões - Análise 3.

| ANÁLISE 3 |                |      |      |                |      |                  |
|-----------|----------------|------|------|----------------|------|------------------|
| N         | ÃO RECOMEN     | DADA |      | RECOMEND       | ADA  | 0/ DE            |
| CASO      | % DE<br>TENSÃO | NÓ   | CASO | % DE<br>TENSÃO | NÓ   | % DE<br>VARIAÇÃO |
| L19       | 48,2           | 1310 | L83  | 53,7           | 1310 | 35,7             |
| L20       | 49,3           | 1310 | L84  | 55,6           | 1310 | 35,2             |
| L21       | 51,2           | 1310 | L85  | 45,9           | 1310 | 27,4             |
| L22       | 49,7           | 1310 | L86  | 43,3           | 1310 | 26,2             |
| L23       | 49,7           | 1310 | L87  | 46,9           | 1310 | 30,0             |
| L24       | 51,2           | 1310 | L88  | 49,3           | 1310 | 28,6             |
| L25       | 49,3           | 1310 | L89  | 51,2           | 1310 | 32,8             |
| L26       | 48,2           | 1310 | L90  | 49,2           | 1310 | 31,2             |
| L27       | 49,6           | 1310 | L91  | 49,9           | 1310 | 32,2             |

Em comum para as três análises apresentadas neste estudo de caso, tem-se basicamente o atrito como o efeito da não linearidade recorrente. Como pode ser observado nas Figuras 72, 73 e 74, as restrições verticais unidirecionais do tipo +Z são evitadas, por também contribuírem para o efeito da não linearidade. Assim, por mais que a suportação aplicada fisicamente na tubulação seja somente apoiada, não restringindo o movimento vertical para cima, as restrições são representadas no *software* como Z pleno (bidirecional).

De acordo com os resultados apresentados na Tabelas 64, 65 e 66, observa-se que o percentual de variação de tensão para a Análise 2 foi significativamente menor do que o percentual das demais análises devido ao menor tamanho do sistema analisado, e consequentemente, menor quantidade de suportes (atrito).

Conclui-se que a variação de resultados chega à ordem de 35,2%, o que, consequentemente, significa uma alteração significativa de resultados no cálculo do dano total

acumulado. De acordo com a avaliação dos projetos de engenharia já executados, observou-se que determinados casos de carregamentos foram combinados de forma não adequada, ou seja, mais suscetíveis aos efeitos da não linearidade do cálculo.

## **CAPÍTULO VI**

## 6.1 PROPOSTAS DE PROCEDIMENTOS DE PROJETO À FADIGA DE TUBULAÇÕES

A definição dos casos de carregamentos de uma análise de tensões é um dos pontos chaves para a elaboração do estudo de flexibilidade de tubulações. Quanto mais bem arquitetados, no sentido de abranger todas, ou a maioria, das condições sujeitas a ocorrer ao longo de toda a vida útil do sistema de tubulações, levando em consideração os fenômenos operacionais, tais como: deslocamentos impostos por equipamentos, condições de escoamento, abertura de uma válvula de alívio, combinações térmicas operacionais, entre outros, bem como, a consideração dos efeitos relacionados ao fato do sistema estar contido em um navio submetido às ações das ondas do mar, mais precisa será a análise de flexibilidade. Consequentemente, a maior precisão deste estudo leva à maior proximidade dos resultados no campo.

Resumidamente, os casos de carregamentos buscam contemplar todas as condições de processo e esforços aos quais um determinado sistema de tubulação estará submetido, incluindo-se a necessidade da consideração das fontes de fadiga devido às acelerações, deslocamentos estruturais e temperatura.

Como já comentado anteriormente, a proposição de uma metodologia padrão específica para o cálculo de fadiga de sistemas de tubulação de plataformas de petróleo é o principal objetivo desta dissertação. A partir desta, espera-se alcançar uma significativa redução de horas de execução de projetos de engenharia com métodos ainda conservadores de avaliação de fadiga, além do ganho significativo na otimização de arranjo e *suportação* dos sistemas de tubulações.

Neste capítulo serão apresentados dois critérios de análise. O primeiro refere-se ao critério de acúmulo de dano, comumente utilizado nos projetos de Engenharia executados até os dias atuais, entretanto, com a aplicação de alguns artifícios que buscam um maior refinamento dos resultados de dano acumulado.

O segundo procedimento, corresponde ao critério de avaliação de fadiga baseado em tensão admissível. Com base nas investigações realizadas ao longo da execução desta dissertação, será sugerida uma nova metodologia de avaliação da fadiga baseada na tensão

admissível. Resumidamente, esta proposta de procedimento subdivide-se em dois critérios de avaliação, sendo eles:

- 1) Procedimento de Avaliação da Fadiga através do Critério do Acúmulo de Dano;
- 2) Procedimento de Avaliação da Fadiga através do Critério da Tensão Admissível.

A definição das linhas denominadas "críticas", ou seja, linhas que requerem a avaliação computacional através de *software* de análise de tensões, são essenciais na elaboração de um projeto de Engenharia, seja na aplicação do critério do acúmulo do dano, seja na aplicação do critério da tensão admissível. Esta definição é fornecida no documento que comtempla o Critério de Análise de Tensões do projeto, e pode variar de caso para caso. Em geral, as linhas críticas são categorizadas como:

- que transportam produtos perigosos ou inflamáveis;

- linhas de grande importância para a operacionalidade da unidade;

- linhas acima ou igual a 4" operando com temperatura igual ou superior a 100°C;

- linhas acima ou igual a 12" operando com temperatura igual ou superior a 75°C;

- linhas acima ou igual a 16" operando a qualquer temperatura;

- todas as linhas que possuem temperatura de operação menor que 0°C;

 tubulações suscetíveis a vibrações devido a carregamentos internos e externos, como por exemplo: linhas com escoamento bifásico, transientes de pressão, altas velocidades de escoamento, vibração induzida por vórtices, entre outros;

- tubulações de materiais especiais tais como duplex, cobre-níquel, e outros para tubulação acima ou igual a 4";

- tubulação a partir de 3" inclusive conectada a equipamentos sensíveis tais como equipamentos rotativos;

- tubulações do anel principal e a distribuição do sistema de incêndio;

 linhas de hidrocarbonetos contendo óleo e gás que precise ser despressurizada após a condição de *blast*;

- linhas de alívio conectadas a válvulas de alívio e discos de ruptura;

- linhas do sistema de *blowdown* a partir de 2" inclusive, com exceção de drenos;

- tubulações ao longo da torre de flare;

- todas as derivações com diâmetro  $\geq 1/3$  do diâmetro da linha tronco, desde que afastadas de equipamentos, ou que não possuam massas concentradas que possam contribuir para o efeito da fadiga;

- todas as linhas de produção ou injeção;

- linhas afetadas pelos movimentos devido aos deslocamentos da estrutura, equipamentos conectados, movimentos de pontes, entre outros;

#### 6.1.1 Procedimento de Análise de Fadiga baseado no Critério de Acúmulo de Dano

Este corresponde ao critério de análise de fadiga comumente utilizado em projetos de engenharia de unidades FPSO executados até os dias atuais. Os subitens a seguir trazem a definição de todos os parâmetros considerados neste critério.

## • Deslocamentos de SAG e HOG:

Os casos de carregamentos foram elaborados de modo a levar em consideração os deslocamentos de *SAG* e *HOG* da viga navio, tanto para a condição DOC (*Design Operation Condition*), quanto para a condição DEC (*Design Extreme Condition*). Todos estes cenários foram aplicados em uma mesma filosofia de casos de carregamentos, sem a necessidade de que seja destinado um arquivo da análise somente para a condição DOC e outro somente para a condição DEC. Desta forma, são evitados possíveis erros na replicação destes arquivos por parte da projetista, bem como a facilitação do trabalho da fiscalização do projeto que executará a verificação de somente um arquivo (com exceção dos arquivos *blast* e *transit* que não são abordados nesta dissertação e não levam em consideração o efeito da fadiga).

Resumidamente, os casos de carregamento idealizados neste critério não adotam premissas simplificadoras para a consideração dos deslocamentos da viga navio. Os deslocamentos de SAG e HOG são contemplados em casos distintos e devem ser aplicados na análise de flexibilidade.

## • Acelerações:

As acelerações são contempladas nos casos de carregamento do critério do acúmulo de dano tanto para a condição DOC, quanto para a condição DEC, levando-se em consideração o efeito da não linearidade explicada no Capítulo IV desta dissertação. Para estas duas condições, foram aplicados fatores de altura de onda, também conforme a Tabela 69. A última faixa (11)

da condição DEC corresponde à passagem da onda centenária. Os vetores acelerações foram combinados em 8 combinações, não tendo sido considerado nenhuma combinação de aceleração predominante. Conforme informado no item 3.1.2.1 desta dissertação, não é considerado o efeito da tensão média.

| COMBINAÇÕES DAS ACELERAÇÕES |           |  |  |
|-----------------------------|-----------|--|--|
| COMBINAÇÃO 1                | +U1+U2+U3 |  |  |
| COMBINAÇÃO 2                | +U1-U2+U3 |  |  |
| COMBINAÇÃO 3                | +U1+U2-U3 |  |  |
| COMBINAÇÃO 4                | +U1-U2-U3 |  |  |
| COMBINAÇÃO 5                | -U1+U2+U3 |  |  |
| COMBINAÇÃO 6                | -U1-U2+U3 |  |  |
| COMBINAÇÃO 7                | -U1+U2-U3 |  |  |
| COMBINAÇÃO 8                | -U1-U2-U3 |  |  |

Tabela 67 Combinação dos vetores acelerações.

• Linhas de menores diâmetros:

A fim de reduzir a ocorrência de falhas por fadiga em derivações do tipo "*weldolet*", ou seja, nos casos de conexões em que há uma maior variação entre o diâmetro da linha tronco e o diâmetro da derivação, este procedimento recomenda a inclusão das derivações de diâmetros iguais ou maiores que 2" na análise computacional, a fim de que seja prevista a adequada suportação para estas linhas que muitas vezes, são suportadas com critérios não assertivos. Principalmente, quando estas conexões se fizerem próximas a equipamentos rotativos, ou estejam conectadas à tubulações suscetíveis à vibração, bem como possuam acessórios (massas concentradas) que contribuam para o processo de falha por fadiga. Nesses casos, uma adequada avaliação na determinação dos pontos e tipos de suportes que proporcionam o aumento da rigidez destas linhas é imprescindível para uma menor ocorrência de falhas por fadiga em operação.

Atualmente, ferramentas de modelagem 3D possuem artifícios de rápida conversão de todo um sistema de tubulação, sem a necessidade do modelamento manual do arranjo no *software* de análise de flexibilidade, proporcionando ganho de tempo de execução, bem como a garantia da fidelidade de que o arranjo analisado corresponde ao arranjo contido na maquete eletrônica.

• Critério de Dano Admissível:

Conforme recomenda a norma BS PD 5500 (1997), o dano admissível à fadiga não deve ser maior do que 0,6 para tubulações de até 22 mm de espessura. Para tubulações com espessura superior a 22 mm, o dano admissível deve ser calculado de acordo com a equação 27:

$$\sum \frac{ni}{Ni} \le 0.6 \left(\frac{22}{e}\right)^{0.75} \tag{EQ27}$$

onde:

i – índice i = 1,2,3, etc.  $n_i$  – número esperados de ciclos;  $N_i$  – número de ciclos admissíveis obtidos a partir da curva F3 da DNV RP C203; e – espessura de parede da tubulação.

• Deformações Dinâmicas e Deformações em águas calmas (Still Water):

Conforme exposto no item 2.8 desta dissertação, as deformações dinâmicas são aquelas decorrentes da ação das ondas sobre a embarcação, correspondendo geralmente a cerca de 60% da deformação total do FPSO. A aplicação deste critério está contemplada no caso L191 para a condição *Design Operation Condition* (DOC), e L286 para a condição *Design Extreme Condition* (DEC) apresentados na Tabela 6.5.

• Curva de Fadiga:

A definição da curva de fadiga corresponde a um dos principais pontos de importância na avaliação da fadiga em tubulações *offshore*. Devido à certa obscuridade no entendimento dos fatores de intensificação de tensões (SIFs) adotados pela norma ASME B31.3, que será explanada a seguir, conclui-se que a curva F3 da norma DNV RP C203 corresponde à curva mais adequada a ser utilizada no estudo de fadiga.

A tabela A.9 da norma DNV apresenta o detalhe da junta correspondente a curva F3 que contempla uma solda de topo circunferencial feita apenas a partir de um lado da tubulação sem a utilização de barra cobre junta (*back bar*). Estes procedimentos de soldagem de juntas tubulares são aqueles normalmente utilizados em campo, o que justifica a adoção da curva F3 no projeto à fadiga de tubulações.



Fig. 75 Detalhe da junta soldada abrangida pela curva F3. Fonte: (DNV RP C203, 2014).

Muito se discute a respeito da duplicidade de fatores intensificadores de tensão tanto da curva F3 da norma DNV RP C203, quanto dos intensificadores de tensão da própria ASME B31. Entretanto, segundo Peng (2009), os fatores intensificadores de tensão contidos nas normas ASME B31 correspondem à metade do valor teórico, com exceção de tubulações Classe 1 aplicáveis à componentes do sistema de refrigeração de reatores nucleares, cuja falha na refrigeração poderia causar um grave acidente.

O motivo pelo qual os fatores de intensificação de tensão são divididos por 2 pelos códigos corresponde à, basicamente, fins de praticidade. Pois, os corpos de prova de tubulações utilizados nos testes de fadiga para definição dos critérios de avaliação de tensões secundárias da ASME B31.3 já possuem SIF de aproximadamente 2,0, portanto, se fossem utilizados os SIF's teóricos, as análises dos sistemas de tubulações precisariam identificar todas as soldas circunferenciais contidas ao longo do arranjo para a aplicação do SIF. Desta forma, a tensão calculada de acordo com os códigos ASME B31 em pontos com intensificação de tensões, corresponde somente a metade da tensão teórica, o que não traz nenhum prejuízo, uma vez estando o sistema dentro dos limites estabelecidos pelo código, pois a tensão admissível também foi ajustada de acordo com esta premissa.

Entretanto, existem ocasiões em que algo não coberto pelo código precisa ser levado em consideração, como é o caso da fadiga de alto ciclo. Importante ressaltar que, dos códigos que cobrem o estudo de tensões em tubulações, somente a norma IGE/TD/12 leva também em consideração o efeito da fadiga.

Ao se realizar uma análise de fadiga em tubulações utilizando uma curva de fadiga não pertencente ao código ASME B31, que tenha sido obtida com base em corpos de prova com SIF diferente de 2,0, a tensão calculada pela ASME B31 precisa ser corrigida antes de utilizar a curva de fadiga de fora da norma. Por este motivo, foi escolhida a curva F3 da norma DNV RP C203, uma vez que esta foi obtida com corpos de prova mais parecidos com os corpos utilizados na definição dos critérios da norma. • Verificação de tensão – SRSS:

Conforme recomendação do apêndice G da norma DNV RP D101, apesar de não se tratar de um caso de carregamento destinado à avaliação de fadiga, este foi considerado nos casos de carregamentos apresentados nas Tabelas 70 e 72. De acordo com esta recomendação, o resultado de tensão obtido a partir da raiz quadrada da soma dos quadrados dos vetores aceleração deve ser menor do que 1,33  $S_H$  (OCC – Caso ocasional).

• Número de Ciclos:

O número de ciclos de repetições foi considerado para as diversas faixas de alturas de ondas conforme a Tabela 6.2 que traz a distribuição de altura significativa de onda Hs e períodos de pico das ondas Tp de acordo com o METOCEAN DATA. Para as combinações das acelerações em cada faixa de altura, o número de ciclos da faixa foi dividido igualmente entre as oito combinações.

| Π |      |       | Tp(s) |      |      |       |       |       |      |      |      |      |      |      |      |      |      |      |      |      |       |       |       |
|---|------|-------|-------|------|------|-------|-------|-------|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------|-------|
| П | На   | (m)   | 3     | 4    | 5    | 6     | 7     | 8     | 9    | 10   | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20   | Freq  | %     | Mean  |
| П | ns   | (11)  | 4     | 5    | 6    | 7     | 8     | 9     | 10   | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20   | 21   |       |       | Тр    |
| П | 0.0  | 0.5   | 1     | 0    | 0    | 1     | 2     | 2     | 1    | 0    | 0    | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 8     | 0.01  | 8.24  |
| П | 0.5  | 1.0   | 107   | 113  | 205  | 256   | 273   | 159   | 112  | 74   | 68   | 50   | 41   | 38   | 12   | 4    | 0    | 0    | 0    | 0    | 1512  | 2     | 7.73  |
| П | 1.0  | 1.5   | 15    | 938  | 1115 | 1792  | 3608  | 2505  | 692  | 373  | 283  | 260  | 108  | 103  | 31   | 11   | 3    | 0    | 2    | 3    | 11842 | 15.64 | 7.7   |
| П | 1.5  | 2.0   | 1     | 349  | 3682 | 3524  | 4602  | 6028  | 2948 | 1626 | 993  | 534  | 251  | 174  | 69   | 26   | 18   | 8    | 1    | 2    | 24836 | 32.8  | 8.12  |
| П | 2.0  | 2.5   | 0     | 13   | 1265 | 4995  | 2430  | 2755  | 2041 | 1870 | 1806 | 982  | 523  | 284  | 105  | 32   | 10   | 8    | 2    | 0    | 19121 | 25.25 | 8.74  |
| П | 2.5  | 3.0   | 0     | 6    | 109  | 2114  | 2404  | 1040  | 858  | 798  | 879  | 1021 | 514  | 288  | 108  | 20   | 8    | 6    | 1    | 1    | 10175 | 13.44 | 9.27  |
| П | 3.0  | 3.5   | 0     | 1    | 4    | 403   | 1240  | 856   | 277  | 292  | 294  | 424  | 431  | 280  | 77   | 18   | 8    | 1    | 1    | 1    | 4608  | 6.09  | 9.82  |
| П | 3.5  | 4.0   | 0     | 0    | 0    | 43    | 268   | 550   | 189  | 91   | 140  | 141  | 139  | 209  | 75   | 16   | 5    | 1    | 0    | 0    | 1867  | 2.47  | 10.45 |
| П | 4.0  | 4.5   | 0     | 0    | 0    | 3     | 31    | 207   | 161  | 48   | 47   | 63   | 68   | 89   | 73   | 17   | 3    | 0    | 0    | 0    | 810   | 1.07  | 11.16 |
| П | 4.5  | 5.0   | 0     | 0    | 0    | 0     | 4     | 48    | 116  | 48   | 15   | 21   | 41   | 57   | 35   | 19   | 6    | 0    | 0    | 0    | 410   | 0.54  | 11.75 |
| П | 5.0  | 5.5   | 0     | 0    | 0    | 0     | 0     | 16    | 45   | 60   | 19   | 15   | 16   | 22   | 20   | 7    | 8    | 1    | 0    | 0    | 229   | 0.3   | 11.88 |
| П | 5.5  | 6.0   | 0     | 0    | 0    | 0     | 0     | 2     | 22   | 44   | 19   | 7    | 6    | 15   | 9    | 0    | 0    | 0    | 0    | 0    | 124   | 0.16  | 11.5  |
| П | 6.0  | 6.5   | 0     | 0    | 0    | 0     | 0     | 0     | 10   | 18   | 22   | 0    | 3    | 11   | 2    | 0    | 0    | 0    | 0    | 0    | 66    | 0.09  | 11.55 |
| П | 6.5  | 7.0   | 0     | 0    | 0    | 0     | 0     | 0     | 3    | 12   | 12   | 2    | 0    | 7    | 3    | 0    | 0    | 0    | 0    | 0    | 39    | 0.05  | 11.99 |
| П | 7.0  | 7.5   | 0     | 0    | 0    | 0     | 0     | 0     | 4    | 4    | 14   | 1    | 0    | 1    | 5    | 0    | 0    | 0    | 0    | 0    | 29    | 0.04  | 11.99 |
| П | 7.5  | 8.0   | 0     | 0    | 0    | 0     | 0     | 0     | 2    | 1    | 1    | 4    | 0    | 0    | 3    | 0    | 0    | 0    | 0    | 0    | 11    | 0.01  | 12.51 |
| П | 8.0  | 8.5   | 0     | 0    | 0    | 0     | 0     | 0     | 0    | 5    | 0    | 1    | 0    | 1    | 2    | 0    | 0    | 0    | 0    | 0    | 9     | 0.01  | 12.47 |
| П | 8.5  | 9.0   | 0     | 0    | 0    | 0     | 0     | 0     | 1    | 6    | 3    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 10    | 0.01  | 10.82 |
| П | 9.0  | 9.5   | 0     | 0    | 0    | 0     | 0     | 0     | 0    | 1    | 1    | 1    | 0    | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 4     | 0.01  | 12.88 |
| П | 9.5  | 10.0  | 0     | 0    | 0    | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 2    | 0    | 0    | 0    | 0    | 2     | 0     | 16.95 |
| П | 10.0 | 10.5  | 0     | 0    | 0    | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     |
| П | 10.5 | 11.0  | 0     | 0    | 0    | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     |
|   | Fr   | eq    | 124   | 1420 | 6380 | 13131 | 14862 | 14168 | 7482 | 5371 | 4616 | 3527 | 2141 | 1580 | 629  | 173  | 69   | 25   | 7    | 7    | 75712 |       |       |
|   |      | %     | 0.16  | 1.88 | 8.43 | 17.34 | 19.63 | 18,71 | 9.88 | 7.09 | 6.1  | 4.66 | 2.83 | 2.09 | 0.83 | 0.23 | 0.09 | 0.03 | 0.01 | 0.01 |       |       |       |
|   | Mea  | an Hs | 0.86  | 1.35 | 1.75 | 2.07  | 2.03  | 2.04  | 2.2  | 2.31 | 2.38 | 2.49 | 2.69 | 2.9  | 3,14 | 3,12 | 3.05 | 2.43 | 2.07 | 1.96 |       |       |       |

Tabela 68 Distribuição de alturas e períodos de ondas.

Fonte: (S/D).

• Fatores de Alturas de Ondas:

Propõe-se que para a condição *Design Operation Condition* (DOC) sejam consideradas as faixas de ondas de 0,0 a 8,0 metros de altura, enquanto que para a condição *Design Extreme Condition* (DEC), as faixas de altura de ondas devem ser de 8,0 a 11,0 metros.

Os casos de carregamentos aqui propostos aplicam o fator de altura de onda para o cálculo de dano devido às acelerações e deslocamentos, o que não foi observado na análise de projetos anteriores, nos quais os fatores de altura de onda eram aplicados somente para os deslocamentos da viga navio. A fim de obter um maior refinamento dos resultados, e, em contrapartida, buscando não impactar em uma quantidade ainda maior de casos de carregamentos, as faixas de altura de onda foram agrupadas conforme a Tabela 69. Observa-se que um agrupamento mais refinado da faixa 2 à faixa 7 foi previsto por se tratarem das faixas nas quais são identificadas as maiores ocorrências de danos por fadiga.

Conforme comentado anteriormente no Capítulo II, tanto para o apêndice W da ASME B31.3, quanto para a norma ABS – *Spectral-based fatigue analysis for* FPSO *installations* (2018), supõe-se uma relação linear entre altura de onda e as tensões e deformações produzidas por estas na embarcação, desta forma considerou-se uma relação linear entre o fator de altura de onda e a altura de onda, determinado através da Equação 28.

$$F_n = \frac{H_n}{H_C}$$
(EQ28)

onde:

n -índice n = 1,2,3... $F_n -$ Fator de altura de onda;  $H_n -$ altura máxima da faixa (n);

H<sub>C</sub> – altura da onda centenária (10,25 m) ou maior altura da onda de DOC (8 metros).

| CONDIÇÃO | FAIXA | ALTURA<br>(m)  | FATOR DE ALTURA | CICLOS     |
|----------|-------|----------------|-----------------|------------|
|          | 1     | 0 a 1<br>1 a 2 | 0,250           | 49.911.401 |
|          | 2     | 2 a 2,5        | 0,316           | 22.781.434 |
|          | 3     | 2,5 a 3        | 0,375           | 11.429.746 |
|          | 4     | 3 a 3,5        | 0,438           | 4.886.331  |
| DOC      | 5     | 3,5 a 4        | 0,500           | 1.860.415  |
|          | 6     | 4 a 4,5        | 0,563           | 755.793    |
|          | 7     | 4,5 a 5        | 0,625           | 363.352    |
|          | 8     | 5 a 6          | 0,750           | 313.006    |
|          | 9     | 6 a 7<br>7 a 8 | 1,000           | 127.717    |
| DEC      | 10    | 8 a 10         | 0,909           | 21.602     |
|          | 11    | 10 a 11        | 1               | 1          |

#### Tabela 69 Fator de altura de onda proposto.

• Full Range:

Os casos de carregamentos aqui abordados levam em consideração o *full range* de tensões devido aos deslocamentos de SAG e HOG, representados pelo *load case* L190 para a condição *Design Operation Condition* (DOC) e L285 para a condição *Design Extreme Condition* (DEC).

A Tabela 70 apresenta um resumo dos principais parâmetros considerados no procedimento de análise de fadiga baseado no critério do acúmulo de dano.

## Tabela 70 Procedimento de análise de fadiga baseado no critério do Acúmulo de Dano.

## PROCEDIMENTO DO CRITÉRIO DE ACÚMULO DE DANO PARA ANÁLISE DE FADIGA

| 6.1  | ACELERAÇÕES                           | DOC – Design Operation Condition                     |
|------|---------------------------------------|------------------------------------------------------|
|      |                                       | DEC – Design Extreme Condition                       |
| 6.2  | DESLOCAMENTOS ESTRUTURAIS (SAG E HOG) | Deverão ser considerados deslocamentos de            |
|      |                                       | SAG e HOG, tanto para DOC quanto para                |
|      |                                       | DEC.                                                 |
| 6.3  | FADIGA TÉRMICA                        | Deverá ser considerada a partir do maior             |
|      |                                       | caso de expansão (EXP), para uma                     |
|      |                                       | quantidade total de 7.000 ciclos                     |
|      |                                       | operacionais.                                        |
| 6.4  | FATORES DE ALTURAS DE ONDAS APLICADOS | Sim, conforme agrupamento da Tabela 6.2              |
|      | PARA DESLOCAMENTOS E ACELERAÇÕES      |                                                      |
| 6.5  | CASOS DE CARREGAMENTOS                | Conforme Tabela 6.4.                                 |
| 6.6  | ATUALIZAÇÃO DOS SIF's e K's CONFORME  | SIM                                                  |
|      | ASME B31.J                            |                                                      |
| 6.7  | CURVA DE FADIGA                       | F3 da norma DNV RP C203                              |
| 6.8  | FREQUÊNCIA NATURAL DE VIBRAÇÃO MÍNIMA | 5,0 Hz                                               |
| 6.9  | VIDA ÚTIL                             | Conforme o projeto                                   |
| 6.10 | QUANTIDADE DE CICLOS                  | Conforme METOCEAN DATA                               |
| 6.11 | DANO ADMISSÍVEL                       | 0,6 para tubos até 22 mm (espessura).                |
|      |                                       | $\sum \frac{n_i}{N_i} \le 0.6 (\frac{22}{e})^{0.75}$ |
| 6.12 | MÉTODO DE CÁLCULO DE DANO             | PALMGREN MINER                                       |
| 6.13 | ANÁLISE COMPUTACIONAL DE DERIVACÕES   | DERIVACÕES ≥ 2" PRÓXIMAS A                           |
|      | DE MENORES DIÂMETROS                  | EQUIPAMENTOS ROTATIVOS E QUE                         |
|      |                                       | POSSUAM ACESSÓRIOS (MASSAS                           |
|      |                                       | CONCENTRADAS).                                       |
| L    | 1                                     |                                                      |

A Tabela 71 apresenta os 305 casos de carregamentos para o critério do acúmulo de dano.

|               | CASO DE CARREGAMENTO                                         | DESCRIÇÃO                                          | TIPO DE<br>TENSÃO | N°<br>CICLOS | OBS.                                                                 |
|---------------|--------------------------------------------------------------|----------------------------------------------------|-------------------|--------------|----------------------------------------------------------------------|
| L1            | W+T1+P1+D1                                                   | OPERAÇÃO – CONDIÇÃO<br>DE PROJETO MÁXIMA           | OPE               | -            | CASO DE<br>OPERAÇÃO<br>SEM<br>ACELERAÇ<br>ÕES E<br>DESLOCAM<br>ENTOS |
| L2 W+T2+P1+D2 |                                                              | OPERAÇÃO – CONDIÇÃO<br>DE PROJETO MÍNIMA           | OPE               | -            | CASO DE<br>OPERAÇÃO<br>SEM<br>ACELERAÇ<br>ÕES E<br>DESLOCAM<br>ENTOS |
| L3            | W+P1                                                         | TUBO CHEIO + PRESSÃO<br>INTERNA                    | SUS               | -            | PESO<br>PRÓPRIO                                                      |
| L4            | L1-L3                                                        | TÉRMICA P/ T1                                      | EXP               | -            | SECUNDARI<br>A                                                       |
| L5            | L2-L3                                                        | TÉRMICA P/ T2                                      | EXP               | -            | SECUNDARI<br>A                                                       |
| L6            | W+T1+P1+D1+A1.U1+B1.U2+C1.U3                                 | COMB. 1 – TEMP. 1 - DOC                            | OPE               | -            | CASOS DE                                                             |
| L7            | W+T1+P1+D1+A1.U1+B1.U2-C1.U3                                 | COMB. 2 – TEMP. 1 - DOC                            | OPE               | -            | OPERAÇAO                                                             |
|               | W+T1+P1+D1+A1.U1-B1.U2+C1.U3                                 | COMB. 3 – TEMP. 1 - DOC                            | OPE               | -            | EM                                                                   |
| L9            | W+T1+P1+D1+A1.U1-B1.U2-C1.U3                                 | COMB. 4 – TEMP. 1 - DOC                            | OPE               | -            |                                                                      |
|               | W+TI+PI+DI-AI.UI+BI.U2+CI.U3                                 | COMB. 5 – TEMP. 1 - DOC                            | OPE               | -            | PROIFTO                                                              |
|               | W+T1+P1+D1-A1.U1+B1.U2+C1.U3                                 | COMB. 6 – TEMP. 1 - DOC                            | OPE               | -            | MÁXIMA                                                               |
| L12<br>L13    | W+T1+P1+D1-A1.U1-B1.U2-C1.U3                                 | COMB. 8 – TEMP. 1 - DOC                            | OPE               | -            | COMBINAD<br>OS COM<br>ACELERAÇ<br>ÕES DE DOC                         |
| L14           | W+T2+P1+D2+A1.U1+B1.U2+C1.U3                                 | COMB. 1 – TEMP. 2 – DOC                            | OPE               | -            | CASOS DE                                                             |
| L15           | W+T2+P1+D2+A1.U1+B1.U2-C1.U3                                 | COMB. 2 – TEMP. 2 – DOC                            | OPE               | -            | OPERAÇÃO                                                             |
| L16           | W+T2+P1+D2+A1.U1-B1.U2+C1.U3                                 | COMB. 3 – TEMP. 2 – DOC                            | OPE               | -            | EM                                                                   |
| L17           | W+T2+P1+D2+A1.U1-B1.U2-C1.U3                                 | COMB. 4 – TEMP. 2 – DOC                            | OPE               | -            | TEMPERAT                                                             |
| L18           | W+T2+P1+D2-A1.U1+B1.U2+C1.U3                                 | COMB. 5 – TEMP. 2 – DOC                            | OPE               | -            | URA DE                                                               |
| L19           | W+T2+P1+D2-A1.U1+B1.U2-C1.U3                                 | COMB. 6 – TEMP. 2 – DOC                            | OPE               | -            | MÍNIMA                                                               |
| L20<br>L21    | W+T2+P1+D2-A1.U1-B1.U2+C1.U3<br>W+T2+P1+D2-A1.U1-B1.U2-C1.U3 | COMB. 7 – TEMP. 2 – DOC<br>COMB. 8 – TEMP. 2 – DOC | OPE               | -            | COMBINAD<br>OS COM<br>ACELERAÇ<br>ÕES DE DOC                         |
| L22           | W+T1+P1+D1+A2.U1+B2.U2+C2.U3                                 | COMB. 1 – TEMP. 1 – DEC                            | OPE               | -            | CASOS DE                                                             |
| L23           | W+T1+P1+D1+A2.U1+B2.U2-C2.U3                                 | COMB. 2 – TEMP. 1 – DEC                            | OPE               | -            | OPERACÃO                                                             |
| L24           | W+T1+P1+D1+A2.U1-B2.U2+C2.U3                                 | COMB. 3 – TEMP. 1 – DEC                            | OPE               | -            | EM                                                                   |
| L25           | W+T1+P1+D1+A2.U1-B2.U2-C2.U3                                 | COMB. 4 – TEMP. 1 – DEC                            | OPE               | -            | TEMPERAT                                                             |
| L26           | W+T1+P1+D1-A2.U1+B2.U2+C2.U3                                 | COMB. 5 – TEMP. 1 – DEC                            | OPE               | -            | URA DE                                                               |
| L27           | W+T1+P1+D1-A2.U1+B2.U2-C2.U3                                 | COMB. 6 – TEMP. 1 – DEC                            | OPE               | -            | PROJETO                                                              |
| L28           | W+T1+P1+D1-A2.U1-B2.U2+C2.U3                                 | COMB. 7 – TEMP. 1 – DEC                            | OPE               | -            | MÁXIMA                                                               |
| L29           | W+T1+P1+D1- <b>A2</b> .U1- <b>B2</b> .U2- <b>C2</b> .U3      | COMB. 8 – TEMP. 1 – DEC                            | OPE               | -            | COMBINAD<br>OS COM<br>ACELERAÇ<br>ÕES DE DEC                         |
| L30           | W+T2+P1+D2+A2.U1+B2.U2+C2.U3                                 | COMB. 1 – TEMP. 2 – DEC                            | OPE               | -            | CASOS DE                                                             |
| L31           | W+T2+P1+D2+A2.U1+B2.U2-C2.U3                                 | COMB. 2 – TEMP. 2 – DEC                            | OPE               | -            | OPERAÇÃO                                                             |
| L32           | W+T2+P1+D2+A2.U1-B2.U2+C2.U3                                 | COMB. 3 – TEMP. 2 – DEC                            | OPE               | -            | EM                                                                   |
| L33           | W+T2+P1+D2+A2.U1-B2.U2-C2.U3                                 | COMB. 4 – TEMP. 2 – DEC                            | OPE               | -            | TEMPERAT                                                             |
| L34           | W+T2+P1+D2-A2.U1+B2.U2+C2.U3                                 | COMB. 5 – TEMP. 2 – DEC                            | OPE               | -            | URA DE                                                               |
| L35           | W+T2+P1+D2-A2.U1+B2.U2-C2.U3                                 | COMB. 6 – TEMP. 2 – DEC                            | OPE               | -            | PROJETO                                                              |
| L36           | W+T2+P1+D2-A2.U1-B2.U2+C2.U3                                 | COMB. 7 – TEMP. 2 – DEC                            | OPE               | -            |                                                                      |
| L37           | W+T2+P1+D2-A2.U1-B2.U2-C2.U3                                 | COMB. 8 – TEMP. 2 – DEC                            | OPE               | -            | OS COM                                                               |

# Tabela 71 Casos de carregamentos - Critério do Acúmulo de Dano.

|             | CASO DE CARREGAMENTO | DESCRIÇÃO                                               | TIPO DE<br>TENSÃO | N°<br>CICLOS | OBS.                                                                             |
|-------------|----------------------|---------------------------------------------------------|-------------------|--------------|----------------------------------------------------------------------------------|
|             |                      |                                                         |                   |              | ACELERAÇ                                                                         |
| T 20        |                      |                                                         | CI IC             |              | OES DE DEC                                                                       |
| L38         | L6-L1                | +A1.01+B1.02+C1.03                                      | SUS               | -            | COMBINAÇ                                                                         |
| L39         |                      | +A1.U1+B1.U2-C1.U3                                      | SUS               | -            |                                                                                  |
| L40<br>I 41 |                      | +A1.01-B1.02+C1.03                                      | SUS               | -            |                                                                                  |
| L41<br>I 42 | L9-L1                | +A1.01-B1.02-C1.03                                      | SUS               | -            | ACFLERAC                                                                         |
| L42<br>I 42 |                      | -A1.01+D1.02+C1.05                                      |                   | -            | ÕES DE DOC                                                                       |
|             |                      | -A1.01+B1.02-C1.03                                      |                   | -            | NA                                                                               |
| L44         | L13-L1               | -A1.U1-B1.U2-C1.U3                                      | SUS               | -            | CONDICÇÃ<br>O DE<br>PROJETO<br>MÁXIMA                                            |
| L46         | L38                  | + <b>A1</b> .U1+ <b>B1</b> .U2+ <b>C1</b> .U3<br>(SRSS) | OCC               | -            | RAIZ<br>QUADRADA<br>DA SOMA<br>DOS<br>QUADRADO<br>S DAS<br>ACELERAÇ<br>ÕES - DOC |
| L47         | L14-L2               | + <b>A1</b> .U1+ <b>B1</b> .U2+ <b>C1</b> .U3           | SUS               | -            | COMBINAÇ                                                                         |
| L48         | L15-L2               | +A1.U1+B1.U2-C1.U3                                      | SUS               | -            | ÃO                                                                               |
| L49         | L16-L2               | +A1.U1-B1.U2+C1.U3                                      | SUS               | -            | ALGÉBRICA                                                                        |
| L50         | L17-L2               | +A1.U1-B1.U2-C1.U3                                      | SUS               | -            | PARA                                                                             |
| L51         | L18-L2               | -A1.U1+B1.U2+C1.U3                                      | SUS               | -            | ACELERAÇ                                                                         |
| L52         | L19-L2               | -A1.U1+B1.U2-C1.U3                                      | SUS               | -            | OES DE DOC                                                                       |
| L53         | L20-L2               | -A1.U1-B1.U2+C1.U3                                      | SUS               | -            | NA                                                                               |
| L54         | L21-L2               | -A1.U1-B1.U2-C1.U3                                      | SUS               | -            | O DE<br>PROJETO<br>MÍNIMA                                                        |
| L55         | L47                  | + <b>A1</b> .U1+ <b>B1</b> .U2+ <b>C1</b> .U3<br>(SRSS) | OCC               | -            | RAIZ<br>QUADRADA<br>DA SOMA<br>DOS<br>QUADRADO<br>S DAS<br>ACELERAÇ<br>ÕES - DOC |
| L56         | L38, L47             | +A1.U1+B1.U2+C1.U3                                      | MÁX.              | -            | MAIORES                                                                          |
| L57         | L39, L48             | +A1.U1+B1.U2-C1.U3                                      | MÁX.              | -            | RESULTAD                                                                         |
| L58         | L40, L49             | +A1.U1-B1.U2+C1.U3                                      | MÁX.              | -            | OS DE                                                                            |
| L59         | L41, L50             | +A1.U1-B1.U2-C1.U3                                      | MÁX.              | -            | ACELERAÇ                                                                         |
| L60         | L42, L51             | -A1.U1+B1.U2+C1.U3                                      | MÁX.              | -            | ÕES PARA                                                                         |
| L61         | L43, L52             | -A1.U1+B1.U2-C1.U3                                      | MÁX.              | -            | DOC                                                                              |
| L62         | L44, L53             | -A1.U1-B1.U2+C1.U3                                      | MÁX.              | -            | DENTRE AS                                                                        |
| L63         | L45, L54             | -A1.U1-B1.U2-C1.U3                                      | MÁX.              | -            | DUAS<br>CONDIÇÕES<br>(MÁX. E<br>MÍN.)                                            |
| L64         | L46, L55             | + <b>A1</b> .U1+ <b>B1</b> .U2+ <b>C1</b> .U3<br>(SRSS) | MÁX.              | -            | MAIOR<br>RESULTAD<br>O DE<br>ACELERAÇ<br>ÃO<br>RESULTANT<br>E - DOC              |
| L65         | <b>0,250</b> L56     | ACEL. DOC - FAIXA 1                                     | SUS               | -            | COMPINIAC                                                                        |
| L66         | <b>0,316</b> L56     | ACEL. DOC - FAIXA 2                                     | SUS               | -            |                                                                                  |
| L67         | <b>0,375</b> L56     | ACEL. DOC - FAIXA 3                                     | SUS               | -            |                                                                                  |
| L68         | <b>0,438</b> L56     | ACEL. DOC - FAIXA 4                                     | SUS               | -            | OFS DF DOC                                                                       |
| L69         | <b>0,500</b> L56     | ACEL. DOC - FAIXA 5                                     | SUS               | -            | COM OS                                                                           |
| L70         | <b>0,563</b> L56     | ACEL. DOC - FAIXA 6                                     | SUS               | -            |                                                                                  |

|               | CASO DE CARREGAMENTO                  | DESCRIÇÃO           | TIPO DE<br>TENSÃO | N°<br>CICLOS | OBS.       |
|---------------|---------------------------------------|---------------------|-------------------|--------------|------------|
| L71           | <b>0,625</b> L56                      | ACEL. DOC - FAIXA 7 | SUS               | -            | FATORES    |
| L72           | <b>0,750</b> L56                      | ACEL. DOC - FAIXA 8 | SUS               | -            | DE ONDAS   |
| L73           | <b>1,000</b> L56                      | ACEL. DOC - FAIXA 9 | SUS               | -            |            |
| L74           | <b>0,250</b> L57                      | ACEL. DOC - FAIXA 1 | SUS               | -            |            |
| L75           | <b>0,316</b> L57                      | ACEL. DOC - FAIXA 2 | SUS               | -            | COMBINAÇ   |
| L76           | <b>0,375</b> L57                      | ACEL. DOC - FAIXA 3 | SUS               | -            | ÃO 2 DAS   |
| L77           | <b>0,438</b> L57                      | ACEL. DOC - FAIXA 4 | SUS               | -            | ACELERAÇ   |
| L78           | <b>0,500</b> L57                      | ACEL. DOC - FAIXA 5 | SUS               | -            | ÕES DE DOC |
| L79           | <b>0,563</b> L57                      | ACEL. DOC - FAIXA 6 | SUS               | -            | COM OS     |
| L80           | <b>0,625</b> L57                      | ACEL. DOC - FAIXA 7 | SUS               | -            | FATORES    |
| L81           | <b>0,750</b> L57                      | ACEL. DOC - FAIXA 8 | SUS               | -            | DE ONDAS   |
| L82           | <b>1,000</b> L57                      | ACEL. DOC - FAIXA 9 | SUS               | -            | -          |
| L83           | 0,250 L58                             | ACEL. DOC - FAIXA 1 | SUS               | -            |            |
| L84           | <b>0,316</b> L58                      | ACEL. DOC - FAIXA 2 | SUS               | -            | COMBINAC   |
| L85           | 0,375 L58                             | ACEL. DOC - FAIXA 3 | SUS               | -            | ÃO 3 DAS   |
| L86           | <b>0,438</b> L58                      | ACEL. DOC - FAIXA 4 | SUS               | -            | ACELERAC   |
| L87           | 0,500 L58                             | ACEL. DOC - FAIXA 5 | SUS               | -            | ÕES DE DOC |
| L88           | <b>0.563</b> L58                      | ACEL, DOC - FAIXA 6 | SUS               | -            | COM OS     |
| L89           | 0.625 1.58                            | ACEL, DOC - FAIXA 7 | SUS               | -            | FATORES    |
| L90           | 0.750 L58                             | ACEL DOC - FAIXA 8  | SUS               | -            | DE ONDAS   |
| L90           | 1,000 L 58                            | ACEL DOC - FAIXA 9  | SUS               | _            | -          |
| L92           | 0 250 1 59                            | ACEL DOC - FAIXA 1  | SUS               | _            |            |
| L92           | 0 316 [ 59                            | ACEL DOC - FAIXA 2  | SUS               | _            | COMBINAC   |
| I.94          | 0 375 I 59                            | ACEL DOC - FAIXA 3  | SUS               |              |            |
| L95           | 0 438 1 59                            | ACEL DOC - FAIXA 4  | SUS               | _            | ACELERAC   |
| 1.96          | 0 500 1 59                            | ACEL DOC - FAIXA 5  | SUS               | _            | ÕFS DE DOC |
| L97           | 0,563159                              | ACEL DOC - FAIXA 6  | SUS               | _            | COM OS     |
| L98           | 0,625159                              | ACEL DOC - FAIXA 7  | SUS               | _            | FATORES    |
| L99           | 0,750 [ 59                            | ACEL DOC - FAIXA 8  | SUS               | _            | DE ONDAS   |
| L100          | 1 000 1 59                            | ACEL DOC - FAIXA 9  | SUS               | _            | -          |
| L100          | <b>0 250</b> L 60                     | ACEL DOC - FAIXA 1  | SUS               | _            |            |
| L101          | <b>0 316</b> L 60                     | ACEL DOC - FAIXA 2  | SUS               |              | COMPINIAC  |
| L102          | 0,3751.60                             | ACEL DOC - FAIXA 3  | SUS               |              | ÃO 5 DAS   |
| L103          | 0,375 1.00                            | ACEL DOC - FAIXA 4  | SUS               |              | ACELERAC   |
| L104          | <b>0,500</b> L 60                     | ACEL DOC - FAIXA 5  | SUS               |              | ÕFS DE DOC |
| L105          | 0,5631.60                             | ACEL DOC - FAIXA 6  | SUS               |              | COM OS     |
| L100          | 0,6251.60                             | ACEL DOC - FAIXA 7  | SUS               |              | FATORES    |
| L107          | 0,025 160                             | ACEL DOC - FAIXA 8  | SUS               |              | DE ONDAS   |
| L100          | <b>1 000</b> L 60                     | ACEL DOC - FAIXA 9  | SUS               |              |            |
| L10           | 0 250 1 61                            | ACEL DOC - FAIXA 1  | SUS               |              |            |
| L110          | 0,316161                              | ACEL DOC - FAIXA 2  | SUS               |              | COMPINIAC  |
| L112          | 0,3751.61                             | ACEL DOC - FAIXA 3  | SUS               | _            | ÃO 6 DAS   |
| L112          | 0,375 1.01                            | ACEL DOC - FAIXA 4  | SUS               |              | ACELERAC   |
| L114          | 0.500 L 61                            | ACEL DOC - FAIXA 5  | SUS               | _            | ÕES DE DOC |
| L115          | 0.563 L 61                            | ACEL DOC - FAIXA 6  | SUS               | _            | COM OS     |
| L116          | 0.6251.61                             | ACEL DOC - FAIXA 7  | SUS               | _            | FATORES    |
| L110          | 0,025 101                             | ACEL DOC - FAIXA 8  | SUS               |              | DE ONDAS   |
| L118          | 1 000 L 61                            | ACEL DOC - FAIXA 9  | SUS               |              | -          |
| T 110         | 0.2501.62                             | ACEL DOC - FAIXA 1  | SUS               |              |            |
| L119          | 0,230 E02                             | ACEL DOC - FAIXA 2  | SUS               |              | COMPINIAC  |
| L120          | 0,3751.62                             | ACEL DOC - FAIXA 2  |                   |              | ÃO 7 DAS   |
| L121<br>L 122 | 0,375 1.62                            | ACEL DOC - FAIXA 4  |                   |              |            |
| L122          | <b>0,430</b> L02<br><b>0 500</b> L 62 | ACEL DOC - FAIXA 4  |                   | _            | ÓFS DE DOC |
| L123          | <b>0,500</b> L02<br><b>0 563</b> I 62 | ACEL DOC - FAIXA 3  |                   | _            | COM OS     |
| I 124         | <u> </u>                              | ACEL DOC FAIXA 0    |                   | -            | FATORES    |
| L125          | 0,043 L02                             |                     | 5US               | -            | DE ONDAS   |
| L120          | 1 000 LO2                             |                     | 5US               | -            |            |
| L12/<br>I 129 | <u> </u>                              | ACEL DOC FAIXA 9    |                   | -            | COMPRIAC   |
| I 120         | <b>0,430</b> L03                      | ACEL DOC FAIXA 1    | 5US<br>6110       | -            |            |
| L129          | 0,310 L03                             | ACEL DOC FAIXA 2    | 5US               | -            |            |
| I 121         | <u> </u>                              | ACEL DOC FAIXA 3    |                   | -            | ÓFS DE DOC |
| L132          | <b>0,430</b> L03                      | ACEL DOC - FAIXA 4  | 2112              |              | COM OS     |
| 1 1134        | 0.200 LUJ                             |                     | 1 505             |              | 001100     |

|      | CASO DE CARREGAMENTO | DESCRIÇÃO                                               | TIPO DE<br>TENSÃO | N°<br>CICLOS | OBS.                                                                             |
|------|----------------------|---------------------------------------------------------|-------------------|--------------|----------------------------------------------------------------------------------|
| L133 | <b>0.563</b> L63     | ACEL. DOC - FAIXA 6                                     | SUS               | -            | FATORES                                                                          |
| L134 | <b>0.625</b> L63     | ACEL, DOC - FAIXA 7                                     | SUS               | -            | DE ONDAS                                                                         |
| L135 | <b>0.750</b> L63     | ACEL, DOC - FAIXA 8                                     | SUS               | -            |                                                                                  |
| L136 | <b>1.000</b> L63     | ACEL, DOC - FAIXA 9                                     | SUS               | -            |                                                                                  |
| L137 | L22-L1               | + <b>A2</b> .U1+ <b>B2</b> .U2+ <b>C2</b> .U3           | SUS               | -            | COMBINAC                                                                         |
| L138 | L23-L1               | + <b>A2</b> .U1+ <b>B2</b> .U2- <b>C2</b> .U3           | SUS               | -            | ÃO                                                                               |
| L139 | L24-L1               | +A2.U1-B2.U2+C2.U3                                      | SUS               | -            | ALGÉBRICA                                                                        |
| L140 | L25-L1               | + <b>A2</b> .U1- <b>B2</b> .U2- <b>C2</b> .U3           | SUS               | -            | PARA                                                                             |
| L141 | L26-L1               | -A2.U1+B2.U2+C2.U3                                      | SUS               | -            | ACELERAÇ                                                                         |
| L142 | L27-L1               | -A2.U1+B2.U2-C2.U3                                      | SUS               | -            | ÕES DE DEC                                                                       |
| L143 | L28-L1               | -A2.U1-B2.U2+C2.U3                                      | SUS               | -            | NA                                                                               |
| L144 | L29-L1               | -A2.U1-B2.U2-C2.U3                                      | SUS               | -            | CONDICÇA<br>O DE<br>PROJETO<br>MÁXIMA                                            |
| L145 | L137                 | + <b>A2.</b> U1+ <b>B2.</b> U2+ <b>C2.</b> U3<br>(SRSS) | OCC               | -            | RAIZ<br>QUADRADA<br>DA SOMA<br>DOS<br>QUADRADO<br>S DAS<br>ACELERAÇ<br>ÕES - DEC |
| L146 | L30-L2               | + <b>A2</b> .U1+ <b>B2</b> .U2+ <b>C2</b> .U3           | SUS               | -            | COMBINAÇ                                                                         |
| L147 | L31-L2               | + <b>A2</b> .U1+ <b>B2</b> .U2- <b>C2</b> .U3           | SUS               | -            | ÂO                                                                               |
| L148 | L32-L2               | + <b>A2</b> .U1- <b>B2</b> .U2+ <b>C2</b> .U3           | SUS               | -            | ALGÉBRICA                                                                        |
| L149 | L33-L2               | + <b>A2</b> .U1- <b>B2</b> .U2- <b>C2</b> .U3           | SUS               | -            | PARA                                                                             |
| L150 | L34-L2               | -A2.U1+B2.U2+C2.U3                                      | SUS               | -            | ACELERAÇ                                                                         |
| L151 | L35-L2               | -A2.U1+B2.U2-C2.U3                                      | SUS               | -            | OES DE DEC                                                                       |
| L152 | L36-L2               | -A2.U1-B2.U2+C2.U3                                      | SUS               | -            |                                                                                  |
| L153 | L37-L2               | -A2.U1-B2.U2-C2.U3                                      | SUS               | -            | O DE<br>PROJETO<br>MÍNIMA                                                        |
| L154 | L146                 | + <b>A2.</b> U1+ <b>B2.</b> U2+ <b>C2.</b> U3<br>(SRSS) | occ               | -            | RAIZ<br>QUADRADA<br>DA SOMA<br>DOS<br>QUADRADO<br>S DAS<br>ACELERAÇ<br>ÕES – DEC |
| L155 | L137, L146           | +A2.U1+B2.U2+C2.U3                                      | MÁX.              | -            | MAIORES                                                                          |
| L156 | L138, L147           | + <b>A2</b> .U1+ <b>B2</b> .U2- <b>C2</b> .U3           | MÁX.              | -            | RESULTAD                                                                         |
| L157 | L139, L148           | +A2.U1-B2.U2+C2.U3                                      | MÁX.              | -            | OS DE                                                                            |
| L158 | L140, L149           | +A2.U1-B2.U2-C2.U3                                      | MÁX.              | -            | ACELERAÇ                                                                         |
| L159 | L141, L150           | -A2.U1+B2.U2+C2.U3                                      | MÁX.              | -            | ÕES PARA                                                                         |
| L160 | L142, L151           | -A2.U1+B2.U2-C2.U3                                      | MÁX.              | -            | DEC                                                                              |
| L161 | L143, L152           | -A2.U1-B2.U2+C2.U3                                      | MÁX.              | -            | DENTRE AS                                                                        |
| L162 | L144, L153           | -A2.U1-B2.U2-C2.U3                                      | MÁX.              | -            | DUAS<br>CONDIÇÕES<br>(MÁX. E<br>MÍN.)                                            |
| L163 | L145, L154           | + <b>A2.</b> U1+ <b>B2.</b> U2+ <b>C2.</b> U3<br>(SRSS) | MÁX.              | -            | MAIOR<br>RESULTAD<br>O DE<br>ACELERAÇ<br>ÃO<br>RESULTANT<br>E - DEC              |
| L164 | <b>0,909</b> L155    | ACEL. DEC - FAIXA 10                                    | SUS               | -            | COMBINAÇÃO 1 DASACELEDAC                                                         |
| L165 | <b>1,000</b> L155    | ACEL. DEC - FAIXA 11                                    | SUS               | -            | ACELERAÇ   ÕES DE DEC   COM OS                                                   |

|       | CASO DE CARREGAMENTO | DESCRIÇÃO                          | TIPO DE<br>TENSÃO | N°<br>CICLOS | OBS.                 |
|-------|----------------------|------------------------------------|-------------------|--------------|----------------------|
|       |                      |                                    |                   |              | FATORES              |
|       |                      |                                    |                   |              | DE ONDAS<br>COMBINAC |
| L166  | <b>0,909</b> L156    | ACEL. DEC - FAIXA 10               | SUS               | -            | ÃO 2 DAS             |
|       |                      |                                    |                   |              | ACELERAÇ             |
|       | 1 000 1 154          |                                    | GLIG              |              | ÕES DE DEC           |
| L167  | <b>1,000</b> L156    | ACEL. DEC - FAIXA 11               | SUS               | -            | COM OS               |
|       |                      |                                    |                   |              | DE ONDAS             |
| T 168 | 0 000 I 157          | ACEL DEC. EAIXA 10                 | SUS               |              | COMBINAÇ             |
| L100  | 0,909 E157           | ACEE. DEC - PAIXA 10               | 303               | -            | ÃO 3 DAS             |
|       |                      |                                    |                   |              | ACELERAÇ             |
| L169  | 1.000 L157           | ACEL DEC - FAIXA 11                | SUS               | _            | COM OS               |
|       | 1,000 1157           |                                    |                   |              | FATORES              |
|       |                      |                                    |                   |              | DE ONDAS             |
| L170  | <b>0,909</b> L158    | ACEL. DEC - FAIXA 10               | SUS               | -            | COMBINAÇ             |
|       |                      |                                    |                   |              | ACELERAC             |
| T 171 | 1 000 1 150          |                                    | CUC               |              | ÕES DE DEC           |
|       | 1,000 L158           | ACEL. DEC - FAIXA II               | 505               | -            | COM OS               |
|       |                      |                                    |                   |              | FATORES              |
|       |                      |                                    |                   |              | COMBINAC             |
| L172  | <b>0,909</b> L159    | ACEL. DEC - FAIXA 10               | SUS               | -            | ÃO 5 DAS             |
|       |                      |                                    |                   |              | ACELERAÇ             |
|       |                      |                                    |                   |              | OES DE DEC           |
| L173  | <b>1,000</b> L159    | ACEL. DEC - FAIXA 11               | SUS               | -            | FATORES              |
|       |                      |                                    |                   |              | DE ONDAS             |
| L174  | <b>0 909</b> I 160   | ACEL DEC - FAIXA 10                | SUS               | _            | COMBINAÇ             |
|       | 0,000 1100           |                                    |                   |              | AO 6 DAS             |
|       |                      |                                    |                   |              | ÕES DE DEC           |
| L175  | <b>1,000</b> L160    | ACEL. DEC - FAIXA 11               | SUS               | -            | COM OS               |
|       |                      |                                    |                   |              | FATORES              |
|       |                      |                                    |                   |              | DE ONDAS             |
| L176  | <b>0,909</b> L161    | ACEL. DEC - FAIXA 10               | SUS               | -            | ÃO 7 DAS             |
|       |                      |                                    |                   |              | ACELERAÇ             |
|       |                      |                                    |                   |              | ÕES DE DEC           |
| L177  | <b>1,000</b> L161    | ACEL. DEC - FAIXA 11               | SUS               | -            | COM OS               |
|       |                      |                                    |                   |              | DE ONDAS             |
| T 178 | 0 909 I 162          | ACEL DEC. EAIXA 10                 | SUS               |              | COMBINAÇ             |
| L170  | 0,909 £102           | ACEE. DEC - PAIXA 10               | 303               | -            | ÃO 8 DAS             |
|       |                      |                                    |                   |              | ACELERAÇ             |
| L179  | <b>1,000</b> L162    | ACEL. DEC - FAIXA 11               | SUS               | -            | COM OS               |
|       | ,                    |                                    |                   |              | FATORES              |
|       |                      |                                    |                   |              | DE ONDAS             |
|       | DESLO                | CAMENTOS ESTRUTURAIS               |                   |              |                      |
| T 100 |                      | OPERAÇÃO - CONDIÇÃO                |                   |              | CASOS DE             |
| L180  | W+T1+P1+D1+D8        | DE PROJETO MAXIMA –<br>SAGGING DOC | OPE               | -            | OPERAÇÃO             |
|       |                      | OPERAÇÃO - CONDIÇÃO                |                   |              | MÁXIMA E             |
| L181  | W+T1+P1+D1+D9        | DE PROJETO MÁXIMA –                | OPE               | -            | MINIMA               |
|       |                      | HOGGING – DOC                      |                   |              | OS COM               |
| T 100 |                      | OPERAÇÃO - CONDIÇÃO                |                   |              | DESLOCAM             |
| L182  | W+12+F1+D2+D8        | SAGGING – DOC                      | OPE               | -            | ENTOS DE             |

|      | CASO DE CARREGAMENTO | DESCRIÇÃO                                                   | TIPO DE<br>TENSÃO | N°<br>CICLOS  | OBS.                                                                     |
|------|----------------------|-------------------------------------------------------------|-------------------|---------------|--------------------------------------------------------------------------|
| L183 | W+T2+P1+D2+D9        | OPERAÇÃO - CONDIÇÃO<br>DE PROJETO MÍNIMA –<br>HOGGING – DOC | OPE               | -             | SAG E HOG<br>PARA DOC                                                    |
| L184 | L180-L1              | D8 – TEMP. 1 (SAG)                                          | EXP               | -             | COMBINAÇ                                                                 |
| L185 | L181-L1              | D9 – TEMP. 1 (HOG)                                          | EXP               | -             | ÕES                                                                      |
| L186 | L182-L2              | D8 – TEMP. 2 (SAG)                                          | EXP               | -             | ALGÉBRICA                                                                |
| L187 | L183-L2              | D9 – TEMP. 2 (HOG)                                          | EXP               | -             | S DOS<br>CASOS DE<br>OPE+DESLO<br>CAMENTOS<br>COM OPE<br>NORMAL<br>(DOC) |
| L188 | L184, L186           | Maior Caso de Deslocamento<br>de SAG p/ DOC                 | MÁX               | -             | MAIOR<br>CASO DE<br>DESLOCAM<br>ENTO DE<br>SAG - DOC                     |
| L189 | L185, L187           | Maior Caso de Deslocamento<br>de HOG p/ DOC                 | MÁX               | -             | MAIOR<br>CASO DE<br>DESLOCAM<br>ENTO DE<br>HOG - DOC                     |
| L190 | L188-L189            | Maior caso de SAG menos<br>maior caso de HOG p/ DOC         | EXP               | -             | MAIOR<br>CASO DE<br>SAG –<br>MAIOR<br>CASO DE<br>HOG (DOC)               |
| L191 | 0,6 L190             | Desconsiderando carregamento<br>estático                    | EXP               | -             | -                                                                        |
| L192 | <b>0,250</b> L191    | FAIXA DE ONDA 1 – DOC                                       | EXP               | -             |                                                                          |
| L193 | <b>0,316</b> L191    | FAIXA DE ONDA 2 – DOC                                       | EXP               | -             | CASOS DE                                                                 |
| L194 | <b>0,375</b> L191    | FAIXA DE ONDA 3 – DOC                                       | EXP               | -             | ENTOS SAG                                                                |
| L195 | 0,438 L191           | FAIXA DE ONDA 4 – DOC                                       | EXP               | -             | HOG P/ DOC                                                               |
| L196 | <b>0,500</b> L191    | FAIXA DE ONDA 5 – DOC                                       | EXP               | -             | COM                                                                      |
| L197 | <b>0,563</b> L191    | FAIXA DE ONDA 6 – DOC                                       | EXP               | -             | APLICAÇÃO                                                                |
| L198 | <b>0,625</b> L191    | FAIXA DE ONDA 7 – DOC                                       | EXP               | -             | DE FATOR                                                                 |
| L199 | <b>0,750</b> L191    | FAIXA DE ONDA 8 – DOC                                       | EXP               | -             | DE ALTURA                                                                |
| L200 | <b>1,000</b> L191    | FAIXA DE ONDA 9 – DOC                                       | EXP               | -             |                                                                          |
| L201 | L4, L5               | EXP. MAXIMA                                                 | MAX               | -             | -                                                                        |
| L202 | L201                 | FADIGA TERMICA                                              | FAT               | 7000          | -                                                                        |
| L203 | L192+L65             | _                                                           |                   |               | DESLOCAM                                                                 |
| L204 | L192+L74             |                                                             |                   | N°            | ENTOS                                                                    |
| L205 | L 192+L03            | FADIGA -<br>DESLOCAMENTO D/ FAIXA                           |                   | CICLO         | COMBINAD                                                                 |
| L200 | L192+L101            | 1 COMBINADO COM                                             | FAT               | S             | O COM                                                                    |
| L207 | L192+L110            | ACELERAÇÕES - DOC                                           |                   | FAIXA         | ACELERAÇ                                                                 |
| L200 | L192+L119            |                                                             |                   | 1/11          | OES –                                                                    |
| L210 | L192+L128            | -                                                           |                   |               | FAIXA I                                                                  |
| L211 | L193+L66             |                                                             |                   |               |                                                                          |
| L212 | L193+L75             |                                                             |                   |               | DESLOCAM                                                                 |
| L213 | L193+L84             | FADIGA -                                                    |                   | N°<br>CICLO   | ENTOS                                                                    |
| L214 | L193+L93             | DESLOCAMENTO P/ FAIXA                                       | EAT               | CICLO         | COMBINAD                                                                 |
| L215 | L193+L102            | 2 COMBINADO COM                                             | FAI               | 5<br>FAIVA    |                                                                          |
| L216 | L193+L111            | ACELERAÇÕES - DOC                                           |                   | 2/11          | ÕES –                                                                    |
| L217 | L193+L120            |                                                             |                   |               | FAIXA 2                                                                  |
| L218 | L193+L129            |                                                             |                   |               |                                                                          |
| L219 | L194+L67             | FADIGA -                                                    |                   | N° N°         | DESLOCAM                                                                 |
| L220 | L194+L76             | - DESLOCAMENTO P/ FAIXA                                     |                   | CICLO         | ENTOS                                                                    |
| L221 | L194+L85             | - <b>3</b> COMBINADO COM                                    | FAT               |               | COMBINAD                                                                 |
| L222 | L 194+L94            | – ACELERAÇÕES - DOC                                         |                   | 7AIXA<br>3/11 |                                                                          |
| L443 | L174+L103            |                                                             | 1                 | 5/11          | - ACLEBRAÇ                                                               |

| CASO DE CARREGAMENTO | DESCRIÇÃO                                             | TIPO DE<br>TENSÃO | N°<br>CICLOS                      | OBS.      |
|----------------------|-------------------------------------------------------|-------------------|-----------------------------------|-----------|
| L194+L112            |                                                       |                   |                                   | ÕES –     |
| L194+L121            |                                                       |                   |                                   | FAIXA 3   |
| L194+L130            |                                                       |                   |                                   |           |
| L195+L68             |                                                       | FAT               | N°                                |           |
| L195+L77             |                                                       |                   |                                   | DESLOCAM  |
| L195+L86             | FADIGA -                                              |                   |                                   | ENTOS     |
| L195+L95             | DESLOCAMENTO P/ FAIXA                                 |                   | CICLO                             | COMBINAD  |
| L195+L104            | 4 COMBINADO COM                                       |                   | S DARYA                           | O COM     |
| L195+L113            | ACELERAÇÕES - DOC                                     |                   | FAIXA                             | ACELERAÇ  |
| L195+L122            |                                                       |                   | 4/11                              | UES –     |
| L195+L131            |                                                       |                   |                                   | FAIXA 4   |
| L196+L69             |                                                       |                   |                                   |           |
| L196+L78             |                                                       |                   |                                   | DESLOCAM  |
| L196+L87             | FADIGA -                                              | FAT               | N°                                | ENTOS     |
| L196+L96             | DESLOCAMENTO P/ FAIXA                                 |                   | CICLO                             | COMBINAD  |
| L196+L105            | 5 COMBINADO COM                                       |                   | S<br>FAIXA<br>5 / 11              | O COM     |
| L196+L114            | ACELERACÕES - DOC                                     |                   |                                   | ACELERAÇ  |
| I 196+I 123          |                                                       |                   |                                   | OES –     |
| I 106±I 132          | —                                                     |                   |                                   | FAIXA 5   |
| L100+L132            |                                                       |                   |                                   |           |
| L 107   L 70         |                                                       |                   |                                   | DESLOCAM  |
| L 107 L 199          |                                                       |                   | N°                                | ENTOS     |
| L197+L00             | $- \qquad FADIGA - \\ - \qquad DESLOCAMENTO D/ EAIVA$ |                   | CICLO                             | COMBINAD  |
| L197+L97             | 6 COMBINADO COM<br>ACELERAÇÕES - DOC                  | FAT               | S                                 | O COM     |
| L197+L100            |                                                       |                   | FAIXA                             | ACELERAÇ  |
| L197+L115            |                                                       |                   | 6/11                              | ÕES –     |
| L197+L124            |                                                       |                   |                                   | FAIXA 6   |
| L197+L133            |                                                       |                   |                                   |           |
| L198+L/I             |                                                       | БАТ               | N°<br>CICLO<br>S<br>FAIXA<br>7/11 | DESLOCAM  |
| L198+L80             |                                                       |                   |                                   | ENTOS     |
| L198+L89             | FADIGA -                                              |                   |                                   | COMBINAD  |
| L198+L98             | DESLOCAMENTO P/ FAIXA                                 |                   |                                   | O COM     |
| L198+L107            | 7 COMBINADO COM                                       |                   |                                   | ACELERAC  |
| L198+L116            | ACELERAÇÕES - DOC                                     |                   |                                   | ÕES –     |
| L198+L125            |                                                       |                   |                                   | FAIXA 7   |
| L198+L134            |                                                       |                   |                                   | · · · · · |
| L199+L72             |                                                       |                   |                                   | DESLOCAN  |
| L199+L81             |                                                       |                   | NIO                               | ENTOS     |
| L199+L90             | FADIGA -                                              |                   |                                   | COMPINAD  |
| L199+L99             | DESLOCAMENTO P/ FAIXA                                 | FAT               | ciclo<br>¢                        |           |
| L199+L108            | 8 COMBINADO COM                                       | 1/31              | FAIXA                             | ACELERAC  |
| L199+L117            | ACELERAÇÕES - DOC                                     |                   | 8/11                              | ÕFS –     |
| L199+L126            |                                                       |                   | 0,11                              | FAIXA 8   |
| L199+L135            |                                                       |                   |                                   |           |
| L200+L73             |                                                       |                   |                                   | DEGLOCIE  |
| L200+L82             |                                                       |                   | NTO                               | DESLOCAM  |
| L200+L91             | FADIGA -                                              |                   |                                   | ENTOS     |
| L200+L100            | DESLOCAMENTO P/ FAIXA                                 | E A T             |                                   | COMBINAD  |
| L200+L109            | 9 COMBINADO COM                                       | FAT               |                                   |           |
| L200+L118            | ACELERAÇÕES - DOC                                     |                   | FAIXA                             | ACELERAÇ  |
| L200+L127            |                                                       |                   | 9 / 11                            | UES -     |
| L200+L136            |                                                       |                   |                                   |           |
| W+T1+P1+D1+D10       | OPERAÇÃO – CONDIÇÃO<br>DE PROJETO MÁXIMA –            | OPE               | -                                 | CASOS DE  |

SAGGING - DEC

OPERAÇÃO - CONDIÇÃO

DE PROJETO MÁXIMA -

HOGGING - DEC

OPERAÇÃO - CONDIÇÃO

DE PROJETO MÍNIMA -

SAGGING - DEC

OPE

OPE

\_

\_

L224 L225 L226 L227 L228 L229 L230 L231 L232 L233 L234 L235 L236 L237 L238 L239 L240 L241 L242 L243 L244 L245 L246 L247 L248 L249 L250 L251 L252 L253 L254 L255 L256 L257 L258 L259 L260 L261 L262 L263 L264 L265 L266 L267 L268 L269 L270 L271 L272 L273 L274

L275

L276

L277

W+T1+P1+D1+D11

W+T2+P1+D2+D10

**OPERAÇÃO** 

MÁXIMA E

MÍNIMA

COMBINAD

OS COM

DESLOCAM

ENTOS DE

|               | CASO DE CARREGAMENTO     | DESCRIÇÃO                                                   | TIPO DE<br>TENSÃO | N°<br>CICLOS | OBS.                                                                              |
|---------------|--------------------------|-------------------------------------------------------------|-------------------|--------------|-----------------------------------------------------------------------------------|
| L278          | W+T2+P1+D2+D11           | OPERAÇÃO – CONDIÇÃO<br>DE PROJETO MÍNIMA –                  | OPE               | -            | SAG E HOG<br>PARA DEC                                                             |
|               |                          | HOGGING – DEC                                               |                   |              |                                                                                   |
| L279          | L275-L1                  | D10 – TEMP. 1 (SAG)                                         | SUS               | -            | COMBINAÇ                                                                          |
| L280          | L276-L1                  | D11 - TEMP. 1 (HOG)                                         | SUS               | -            | OES<br>AL CÉRRICA                                                                 |
| L281          | L277-L2                  | D10 – TEMP. 2 (SAG)                                         | SUS               | -            | S DOS                                                                             |
| L282          | L278-L2                  | D11 – TEMP. 2 (HOG)                                         | SUS               | -            | CASOS DE<br>OPE+DESLO<br>CAMENTOS<br>COM OPE<br>NORMAL<br>(DEC)                   |
| L283          | L279, L281               | Maior Caso de Deslocamento<br>de SAG p/ DEC                 | MÁX               | -            | MAIOR<br>CASO DE<br>DESLOCAM<br>ENTO DE<br>SAG - DEC                              |
| L284          | L280, L282               | Maior Caso de Deslocamento<br>de HOG p/ DEC                 | MÁX               | -            | MAIOR<br>CASO DE<br>DESLOCAM<br>ENTO DE<br>HOG - DEC                              |
| L285          | L283-L284                | Maior caso de SAG menos<br>maior caso de HOG p/ DEC         | SUS               | -            | MAIOR<br>CASO DE<br>SAG –<br>MAIOR<br>CASO DE<br>HOG (DEC)                        |
| L286          | 0,6 L285                 | Desconsiderando carregamento<br>estático                    | SUS               | -            | -                                                                                 |
| L287          | <b>0,909</b> L286        | FAIXA DE ONDA 10 – DEC                                      | SUS               | -            | CASOS DE                                                                          |
| L289          | <b>1,000</b> L286        | FAIXA DE ONDA 11 – DEC                                      | SUS               | -            | DESLOCAM<br>ENTOS SAG-<br>HOG P/ DEC<br>COM<br>APLICAÇÃO<br>DE FATOR<br>DE ALTURA |
| L290          | L287+L164                | _                                                           |                   |              | DESLOCAM                                                                          |
| L291          | L287+L166                |                                                             |                   | N°           | ENTOS                                                                             |
| L292          | L287+L168                | FADIGA -                                                    |                   | CICLO        | COMBINAD                                                                          |
| L293          | L28/+L1/0                | DESLUCAMENIU P/ FAIXA                                       | FAT               | S            | O COM                                                                             |
| L294          | L28/+L1/2<br>L287+L174   | $\frac{10 \text{ COMBINADO COM}}{\text{ACELERAÇÕES - DEC}}$ |                   | FAIXA        | ACELERAÇ                                                                          |
| L295<br>I 204 | L20/+L1/4<br>L207-L176   | - ACELERAÇÕES - DEC                                         |                   | 10 / 11      | ÕES –                                                                             |
| L290<br>L 207 | L20/+L1/0<br>L 287+L178  | -                                                           |                   |              | FAIXA 10                                                                          |
| L297          | L207+L170<br>I 288+I 165 |                                                             |                   |              |                                                                                   |
| L299          | L288+L167                | -                                                           |                   |              | DESLOCAM                                                                          |
| L300          | I 288±I 160              | FADIGA -                                                    |                   | N°           | ENTOS                                                                             |
| L300          | L288+L171                | $\frac{1}{1} DESLOCAMENTO P/FAIXA$                          |                   | CICLO        | COMBINAD                                                                          |
| L302          | L288+L173                | 11 COMBINADO COM                                            | FAT               | S            | O COM                                                                             |
| L302          | L288+L175                | ACELERAÇÕES - DEC                                           |                   | FAIXA        | ACELERAÇ                                                                          |
| L304          | L288+L177                | 3                                                           |                   | 11/11        | OES –                                                                             |
| L305          | L288+L179                | -                                                           |                   |              | FAIXA I I                                                                         |

Onde:

W - Peso da tubulação + fluido;

T1 - Temperatura de Projeto Máxima;

T2 – Temperatura de Projeto Mínima;

P1 – Pressão de Projeto;

D1 – Deslocamentos impostos na tubulação para condição de Projeto Máxima (provenientes de um equipamento);

D2 – Deslocamentos impostos na tubulação para condição de Projeto Mínima (provenientes de um equipamento);

D8 - Deslocamentos devido ao movimento de SAGGING para DOC;

D9 – Deslocamentos devido ao movimento de HOGGING para DOC;

D10 – Deslocamentos devido ao movimento de SAGGING para DEC;

- D11 Deslocamentos devido ao movimento de HOGGING para DEC;
- U1 vetor aceleração surge;
- U2 vetor aceleração sway;
- U3 vetor aceleração heave;
- A1/B1/C1 Aceleração para DOC conforme Acceleration Data;
- A2/B2/C2 Aceleração para DEC conforme Acceleration Data.

## • Determinação do Dano Acumulado:

A determinação do dano acumulado é realizada através da ferramenta *cumulative usage* da saída de dados do *software* CAESAR II, contemplando desde o caso L203 ao L274, relacionados à condição *Design Operation Condition* (DOC), e também, do L290 ao L305 relacionados à condição *Design Extreme Condition* (DEC) dos carregamentos propostos para o critério do acúmulo de dano.

## 6.1.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Admissível

Este procedimento busca a simplificação da metodologia de análise de fadiga convencional a partir do critério do acúmulo de dano, apresentada no item anterior, baseandose na comparação da tensão produzida por deslocamento de *sagging* e *hogging* e acelerações atuantes devido à passagem da onda centenária com a tensão admissível.

A partir dos seguintes estudos contemplados no Capítulo III desta dissertação, tais como:

- Análise da distribuição do dano por fadiga em função de diferentes agrupamentos de altura de onda, nível de tensão e curva de fadiga;
- 2- Resultado de dano por fadiga com a adoção de diferentes curvas de fadiga;

3- Estudo das fontes de dano por fadiga (aceleração e deslocamento) em diferentes sistemas de tubulações de FPSO's.

algumas importantes conclusões foram obtidas para a consolidação da proposta deste critério de análise de fadiga baseado na tensão admissível, as quais estão contempladas no item 3.1.3.1.2 desta dissertação. Começando pelos resultados da distribuição de dano por altura de onda, que foi obtida considerando a relação linear entre altura de onda e a tensão na tubulação, com a aplicação de diferentes fatores de altura de onda e número de ciclos de cada faixa de altura de onda conforme o Metocean Data. Para visualização do gráfico que contempla este estudo, consultar as Figuras 17 e 18. Considerou-se a relação linear entre tensão e altura de onda por falta de informações mais precisas sobre as deformações e movimentos que ocorrem no FPSO em função da altura de onda.

A partir da observação de que a maior parte do dano se concentra na faixa de altura de onda entre 2 e 5 metros, foram verificadas algumas formas de agrupamento de alturas de ondas e seus efeitos no cálculo de dano por fadiga. Os resultados foram obtidos considerando diferentes tensões máximas na tubulação devido à onda de maior amplitude (10,25 m). A partir destas tensões máximas, as tensões correspondentes às demais alturas de onda foram calculadas utilizando fatores proporcionais à altura de onda máxima de cada faixa. O dano por fadiga foi calculado de acordo com a regra de Palmgren-Miner, considerando a razão entre número de ciclos para cada faixa de altura de onda indicado no Metocean Data, e o número de ciclos para falha por fadiga, correspondente às tensões de cada faixa de altura de onda, determinado a partir das curvas de fadiga F3 e D, ambas da DNV RP C203. Os resultados de dano calculados foram comparados com os resultados das simulações realizadas através do *software* CAESAR, apresentando ótima concordância, conforme apresentando na Figura 17 e Figura 18.

Outra importante observação incorreu a partir do estudo no qual foi demonstrado que é possível determinar a tensão admissível em função do dano admissível. Os gráficos das Figuras 21 e 22 mostram o dano em função da tensão máxima (relativo à onda de 10,25 m) na tubulação, para o agrupamento de onda mais refinado (de 0,5m em 0,5m) ao se utilizar a curva F3 da norma DNV RP C203 e as condições de mar da Bacia de Santos.

Além dos resultados destes estudos, ao longo das pesquisas realizadas na elaboração desta dissertação, observou-se também a adoção de critérios baseados na tensão admissível em diferentes referências bibliográficas.

Conforme informado no item 2.2.2 desta dissertação, o apêndice W da norma ASME B31.3 baseia-se na determinação de uma faixa de tensão admissível, abordando a amplitude variável de carregamentos randômicos em que a distribuição da faixa de tensão de longa duração pode ser representada por uma distribuição de Weibull de dois parâmetros.

Segundo Robleto *et al.* (2010), a fim de simplificar os critérios de avaliação de fadiga, é muito benéfico converter danos acumulados em tensão admissível para que o analista de flexibilidade possa avaliar a fadiga de maneira similar ao critério de tensão admissível para tensões primária e secundária da própria ASME B31.3.

A determinação da tensão admissível poderá levar em consideração, de forma mais simplificada os vários efeitos que implicam na vida à fadiga do sistema de tubulação, conforme abordado, por exemplo, pela DNV RP C203, tais como:

- efeito da temperatura da linha;

- efeito da espessura de parede;

- efeito do módulo de elasticidade do material da tubulação.

Dentre os benefícios obtidos com a adoção do critério de avaliação de fadiga com base na tensão admissível, frente ao procedimento convencional baseado em acúmulo de dano por fadiga, podemos destacar:

- redução de, aproximadamente, 200 casos de carregamento;

- a tensão admissível pode ser obtida a partir de um agrupamento de onda mais refinado (de 0,5 em 0,5 metro), conforme levantamento do METOCEAN DATA;

- redução de custo e tempo de execução do projeto;

- percepção prematura da maior tensão que o sistema de tubulações poderá apresentar;
- simplificação de relatório de cálculo;

 - os casos de carregamento do critério de avaliação através da tensão admissível poderão ser utilizados em substituição aos casos de carregamentos convencionais de cálculo de dano, sem prejuízo na obtenção dos demais resultados da análise, tais como cargas atuantes nos bocais de equipamentos, cargas atuantes nos suportes contemplando o efeito das acelerações, flechas, tensões, entre outros;

- maior facilidade e agilidade na comparação dos resultados de tensão;

- aplicação do caso FAT somente para a obtenção do dano referente à fadiga térmica;

- maior facilidade de manipulação da curva de fadiga, uma vez que não há a necessidade de entrada de seus dados no *software* de análise de tensões;

 maior facilidade de aplicação dos parâmetros da curva de fadiga, seja relacionado à espessura, temperatura, ou até mesmo a adoção de uma diferente curva para uma linha específica contida na análise de flexibilidade.

- maior assertividade na avaliação da fadiga, uma vez que a maneira de análise é mais simples se comparada ao critério convencional de identificação de dano.

Todos os parâmetros levantados para o critério do acúmulo de dano apresentados no item anterior deverão ser seguidos também para o critério da tensão admissível. Entretanto, os itens a seguir possuem algumas simplificações:

• Acelerações:

A fim de buscar um maior refinamento do resultado da tensão devido às acelerações, são levadas em consideração as acelerações das condições *Design Operation Condition* (DOC) e *Design Extreme Condition* (DEC).

• Número de Ciclos de Ondas:

O número de ciclos deverá ser aplicado conforme o METOCEAN DATA somente para a determinação da tensão admissível. Para os casos de carregamentos considerados no CAESAR II, não há necessidade de consideração do número de ciclos, uma vez que não há necessidade do cálculo do dano devido à ação das ondas pelo *software* de análise de tensões.

• Fatores de alturas de ondas

Para a determinação da tensão admissível é possível a aplicação do agrupamento mais refinado de 0,5 em 0,5 metro. Para os casos de carregamentos considerados no CAESAR II, os fatores de alturas de onda é 1,0 tanto para as acelerações de DOC e DEC.

A Tabela 72 apresenta os fatores de alturas de onda para o agrupamento mais refinado de 0,5 e 0,5 metro. Observa-se que são aplicados aos casos de carregamentos deste critério, somente os fatores em negrito relativos à onda centenária (10,25 metros) e maior onda da condição DOC (8 metros).

| CONDIÇÃO | ALTURA (m) |       | FATOR DE<br>ALTURA | CICLOS     |
|----------|------------|-------|--------------------|------------|
|          | 0          | 0,5   | 0,06               | 10.110     |
|          | 0,5        | 1     | 0,13               | 2.036.827  |
|          | 1          | 1,5   | 0,19               | 16.014.605 |
|          | 1,5        | 2     | 0,25               | 31.849.859 |
|          | 2          | 2,5   | 0,31               | 22.781.434 |
|          | 2,5        | 3     | 0,38               | 11.429.746 |
|          | 3          | 3,5   | 0,44               | 4.886.331  |
| DOC      | 3,5        | 4     | 0,50               | 1.860.415  |
| DOC      | 4          | 4,5   | 0,56               | 755.793    |
|          | 4,5        | 5     | 0,63               | 363.352    |
|          | 5          | 5,5   | 0,69               | 200.725    |
|          | 5,5        | 6     | 0,75               | 112.281    |
|          | 6          | 6,5   | 0,81               | 59.504     |
|          | 6,5        | 7     | 0,88               | 33.871     |
|          | 7          | 7,5   | 0,94               | 25.186     |
|          | 7,5        | 8     | 1,00               | 9.156      |
|          | 8          | 8,5   | 0,83               | 7.516      |
|          | 8,5        | 9     | 0,88               | 9.624      |
| DEC      | 9          | 9,5   | 0,93               | 3.234      |
|          | 9,5        | 10    | 0,98               | 1.229      |
|          | 10         | 10,25 | 1,00               | 1          |

Tabela 72 Agrupamento de altura de onda de 0,5 em 0,5 metro.

A fim de simplificar os casos de carregamento, a determinação do dano devido à fadiga térmica  $d_t$ , bem como o dano proveniente das operações de *loading* e *offloading* do FPSO  $d_{lo}$ , não é contemplada nos casos de carregamento da Tabela 74. Sendo assim, uma parcela de dano deverá ser reservada para estas fontes de fadiga, conforme apresentado na Tabela 73.

| Tabela 73 Procedimento de análise de fadiga | baseado no critério da Tensão Admissível. |
|---------------------------------------------|-------------------------------------------|
|---------------------------------------------|-------------------------------------------|

PROCEDIMENTO DO CRITÉRIO DA TENSÃO ADMISSÍVEL PARA ANÁLISE DE FADIGA

| 6.1 | ACELERAÇÕES                                | DEC – Design Extreme Condition               |  |  |
|-----|--------------------------------------------|----------------------------------------------|--|--|
| 6.2 | DESLOCAMENTOS ESTRUTURAIS (SACE $U_{0}$ C) | Deverão ser considerados deslocamentos de    |  |  |
|     | DESLOCAMENTOS ESTRUTURAIS (SAG E HOG)      | SAG e HOG somente para DEC.                  |  |  |
| 6.3 |                                            | Deverá ser considerada a partir do maior     |  |  |
|     | Ελριζα τέρμιζα                             | caso de expansão (EXP), para uma             |  |  |
|     | FADIOA TERMICA                             | quantidade total de 7.000 ciclos             |  |  |
|     |                                            | operacionais.                                |  |  |
| 6.4 |                                            | De 0,5 em 0,5 metro somente para a           |  |  |
|     | FATORES DE ALTURAS DE ONDAS APLICADOS      | obtenção da tensão admissível. Para os casos |  |  |
|     | PARA DESLOCAMENTOS E ACELERAÇÕES           | de carregamentos considerados no CAESAR      |  |  |
|     |                                            | II, não há necessidade de aplicação.         |  |  |
| 6.5 | CASOS DE CARREGAMENTOS                     | Conforme Tabela 6.6.                         |  |  |
| 6.6 | ATUALIZAÇÃO DOS SIF's e K's CONFORME       | SIM                                          |  |  |
|     | ASME B31.J                                 |                                              |  |  |
| 6.7 | CURVA DE FADIGA                            | F3 da norma DNV RP C203                      |  |  |
| 6.8 | FREQUÊNCIA NATURAL DE VIBRAÇÃO MÍNIMA      | 5,0 Hz                                       |  |  |

| PROCEDIMENTO DO CRITÉRIO DA TENSÃO ADMISSÍVEL PARA ANÁLISE DE FADIGA |                                     |                              |  |  |  |
|----------------------------------------------------------------------|-------------------------------------|------------------------------|--|--|--|
| 6.9                                                                  | VIDA ÚTIL                           | Conforme o projeto           |  |  |  |
| 6.10                                                                 | QUANTIDADE DE CICLOS                | Conforme METOCEAN DATA       |  |  |  |
| 6.11                                                                 | DANO ADMISSÍVEL                     | $d_w = 1 - d_t - d_{lo}$     |  |  |  |
| 6.12                                                                 | MÉTODO DE CÁLCULO DE DANO           | PALMGREN MINER               |  |  |  |
|                                                                      |                                     | DERIVAÇÕES≥2" PRÓXIMAS A     |  |  |  |
| 6 13                                                                 | ANÁLISE COMPUTACIONAL DE DERIVAÇÕES | EQUIPAMENTOS ROTATIVOS E QUE |  |  |  |
| 0.15                                                                 | DE MENORES DIÂMETROS                | POSSUAM ACESSÓRIOS (MASSAS   |  |  |  |
|                                                                      |                                     | CONCENTRADAS).               |  |  |  |

O diagrama da Figura 76 resume a metodologia proposta para a obtenção da tensão admissível. Os dados de entrada abaixo deverão ser inicialmente definidos:

- dados do METOCEAN para obtenção da quantidade de ciclos por faixa de altura de

onda;

- tensão na tubulação produzida pela onda centenária
- fatores de altura de onda de 0,5 em 0,5 metro;
- curva de fadiga;
- critério do dano admissível;
- vida útil do projeto.

Além disso, o critério adota como premissa os seguintes parâmetros:

- critério do acúmulo de dano linear (Palmgren Miner);
- relação linear da tensão com a altura de onda;
- é desprezado o efeito da tensão média.



# Proposta de Método para Determinação da Tensão Admissível

Fig. 76 Proposta de método para determinação da tensão admissível. Fonte: (S/D).

Conforme mostra o diagrama na Fig. 76, o método para determinação da tensão admissível consiste em um procedimento recursivo que tem início com a suposição de uma tensão na tubulação causada pela onda centenária. Em seguida, são calculadas as tensões para as demais alturas de onda utilizando os fatores de altura de onda. Conhecidas as tensões e os números de ciclos correspondentes a cada faixa de altura de onda, para fins de cálculo do dano por fadiga, são então determinados os números de ciclos para a falha por fadiga devido a cada uma destas tensões utilizando a curva de fadiga associada ao elemento de tubulação em análise. Verifica-se agora se o dano por fadiga encontrado é igual ao dano admissível. Caso afirmativo, a tensão admissível está determinada, caso contrário, supõe-se uma nova tensão causada pela onda centenária, repetindo-se os passos anteriores até que o dano por fadiga encontrado seja igual ao dano admissível.

Importante ressaltar que o dano admissível para as ondas ( $d_w$ ) deve ser obtido a partir da subtração dos danos relativos à fadiga térmica ( $d_t$ ), e dano relativo aos carregamentos de *loading e offloading* ( $d_{LO}$ ) do dano total admissível para o projeto ( $d_{Total}$ ), obtido a partir do criério de dano admissível. A tensão encontrada causadora deste dano ( $d_w$ ) será a tensão admissível adotada nos estudos de flexibilidade, de acordo com a Equação 30. A sua obtenção está descrita no item 7.2 do Capítulo VII desta dissertação.

$$d_w = d_{Total} - d_{LO} - d_t \tag{EQ30}$$

Deve-se mencionar também que a relação entre as deformações estruturais e movimentos do FPSO com a altura de onda é uma característica da embarcação, devendo ser determinada através de funções de transferência (*RAO*) pela equipe de estruturas navais. A hipótese utilizada neste trabalho, de que esta relação seja linear, deve-se a falta de informações mais precisas sobre as relações entre altura de onda e as deformações estruturais e movimentos do FPSO.

A Tabela 74 apresenta os casos de carregamentos propostos para o procedimento de análise de fadiga a partir do critério da Tensão Admissível.

A tensão atuante ( $S_{Ew}$ ) devido aos de deslocamentos e acelerações é calculada a partir dos casos de carregamento L54 ao L61, que contemplam as oito combinações de acelerações da condição DOC, L62 ao L69 que contemplam as oito combinações de acelerações da condição DEC, bem como os casos L81 e L93 para obtenção das tensões devido aos deslocamentos para DOC e DEC, respectivamente, deverão ser comparadas com a tensão admissível ( $S_{Aw}$ ). Para um melhor entendimento deste procedimento de obtenção da tensão atuante, consultar item 7.2 do Capítulo VII desta dissertação.

$$S_{EW} \le S_{AW} \tag{EQ31}$$

|    | CASO DE CARREGAMENTO                                       | DESCRIÇÃO                                   | TIPO DE<br>TENSÃO | N°<br>CICLOS | OBSERVAÇÕES                                                   |
|----|------------------------------------------------------------|---------------------------------------------|-------------------|--------------|---------------------------------------------------------------|
| L1 | W+T1+P1+D1                                                 | OPERAÇÃO –<br>CONDIÇÃO DE<br>PROJETO MÁXIMA | OPE               | -            | CASO DE<br>OPERAÇÃO SEM<br>ACELERAÇÕES E<br>DESLOCAMENT<br>OS |
| L2 | W+T2+P1+D2                                                 | OPERAÇÃO –<br>CONDIÇÃO DE<br>PROJETO MÍNIMA | OPE               | -            | CASO DE<br>OPERAÇÃO SEM<br>ACELERAÇÕES E<br>DESLOCAMENT<br>OS |
| L3 | W+P1                                                       | TUBO CHEIO +<br>PRESSÃO INTERNA             | SUS               | -            | PESO PRÓPRIO                                                  |
| L4 | L1-L3                                                      | TÉRMICA P/ T1                               | EXP               | -            | SECUNDÁRIA                                                    |
| L5 | L2-L3                                                      | TÉRMICA P/ T2                               | EXP               | -            | SECUNDÁRIA                                                    |
| L6 | W+T1+P1+D1+ <b>A1</b> .U1+ <b>B1</b> .U2+ <b>C1</b><br>.U3 | COMB. 1 – TEMP. 1 –<br>DOC                  | OPE               | -            | CASOS DE<br>OPERAÇÃO EM                                       |

#### Tabela 74 Casos de carregamentos - Critério da Tensão Admissível.

|     | CASO DE CARREGAMENTO                                       | DESCRIÇÃO                  | TIPO DE<br>TENSÃO | N°<br>CICLOS | OBSERVAÇÕES                                                                                                  |
|-----|------------------------------------------------------------|----------------------------|-------------------|--------------|--------------------------------------------------------------------------------------------------------------|
| L7  | W+T1+P1+D1+A1.U1+B1.U2-<br>C1.U3                           | COMB. 2 – TEMP. 1 –<br>DOC | OPE               | -            | TEMPERATURA<br>DE PROJETO                                                                                    |
| L8  | W+T1+P1+D1+A1.U1-<br>B1.U2+C1.U3                           | COMB. 3 – TEMP. 1 –<br>DOC | OPE               | -            | MÁXIMA<br>COMBINADOS<br>COM<br>ACELERAÇÕES<br>DE DOC                                                         |
| L9  | W+T1+P1+D1+A1.U1-B1.U2-<br>C1.U3                           | COMB. 4 – TEMP. 1 –<br>DOC | OPE               | -            |                                                                                                              |
| L10 | W+T1+P1+D1-<br>A1.U1+B1.U2+C1.U3                           | COMB. 5 – TEMP. 1 –<br>DOC | OPE               | -            |                                                                                                              |
| L11 | W+T1+P1+D1-A1.U1+B1.U2-<br>C1.U3                           | COMB. 6 – TEMP. 1 –<br>DOC | OPE               | -            |                                                                                                              |
| L12 | W+T1+P1+D1- <b>A1</b> .U1-<br><b>B1</b> .U2+ <b>C1</b> .U3 | COMB. 7 – TEMP. 1 –<br>DOC | OPE               | -            |                                                                                                              |
| L13 | W+T1+P1+D1-A1.U1-B1.U2-<br>C1.U3                           | COMB. 8 – TEMP. 1 –<br>DOC | OPE               | -            |                                                                                                              |
| L14 | W+T2+P1+D2+ <b>A1</b> .U1+ <b>B1</b> .U2+ <b>C1</b><br>.U3 | COMB. 1 – TEMP. 2 –<br>DOC | OPE               | -            |                                                                                                              |
| L15 | W+T2+P1+D2+A1.U1+B1.U2-<br>C1.U3                           | COMB. 2 – TEMP. 2 –<br>DOC | OPE               | -            | CASOS DE<br>OPERAÇÃO EM<br>TEMPERATURA<br>DE PROJETO<br>MÍNIMA<br>COMBINADOS<br>COM<br>ACELERAÇÕES<br>DE DOC |
| L16 | W+T2+P1+D2+ <b>A1</b> .U1-<br><b>B1</b> .U2+ <b>C1</b> .U3 | COMB. 3 – TEMP. 2 –<br>DOC | OPE               | -            |                                                                                                              |
| L17 | W+T2+P1+D2+A1.U1-B1.U2-<br>C1.U3                           | COMB. 4 – TEMP. 2 –<br>DOC | OPE               | -            |                                                                                                              |
| L18 | W+T2+P1+D2-<br>A1.U1+B1.U2+C1.U3                           | COMB. 5 – TEMP. 2 –<br>DOC | OPE               | -            |                                                                                                              |
| L19 | W+T2+P1+D2-A1.U1+B1.U2-<br>C1.U3                           | COMB. 6 – TEMP. 2 –<br>DOC | OPE               | -            |                                                                                                              |
| L20 | W+T2+P1+D2-A1.U1-<br>B1.U2+C1.U3                           | COMB. 7 – TEMP. 2 –<br>DOC | OPE               | -            | DEDOC                                                                                                        |
| L21 | W+T2+P1+D2-A1.U1-B1.U2-<br>C1.U3                           | COMB. 8 – TEMP. 2 –<br>DOC | OPE               | -            |                                                                                                              |
| L22 | W+T1+P1+D1+ <b>A2</b> .U1+ <b>B2</b> .U2+ <b>C2</b><br>.U3 | COMB. 1 – TEMP. 1 –<br>DEC | OPE               | -            |                                                                                                              |
| L23 | W+T1+P1+D1+ <b>A2</b> .U1+ <b>B2</b> .U2-<br><b>C2</b> .U3 | COMB. 2 – TEMP. 1 –<br>DEC | OPE               | -            |                                                                                                              |
| L24 | W+T1+P1+D1+ <b>A2</b> .U1-<br><b>B2</b> .U2+ <b>C2</b> .U3 | COMB. 3 – TEMP. 1 –<br>DEC | OPE               | -            | OPERAÇÃO EM                                                                                                  |
| L25 | W+T1+P1+D1+A2.U1-B2.U2-<br>C2.U3                           | COMB. 4 – TEMP. 1 –<br>DEC | OPE               | -            | TEMPERATURA<br>DE PROJETO<br>MÁXIMA<br>COMBINADOS<br>COM<br>ACELERAÇÕES                                      |
| L26 | W+T1+P1+D1-<br>A2.U1+B2.U2+C2.U3                           | COMB. 5 – TEMP. 1 –<br>DEC | OPE               | -            |                                                                                                              |
| L27 | W+T1+P1+D1-A2.U1+B2.U2-<br>C2.U3                           | COMB. 6 – TEMP. 1 –<br>DEC | OPE               | -            |                                                                                                              |
| L28 | W+T1+P1+D1-A2.U1-<br>B2.U2+C2.U3                           | COMB. 7 – TEMP. 1 –<br>DEC | OPE               | -            | DEDEC                                                                                                        |
| L29 | W+T1+P1+D1-A2.U1-B2.U2-<br>C2.U3                           | COMB. 8 – TEMP. 1 –<br>DEC | OPE               | -            |                                                                                                              |
| L30 | W+T2+P1+D2+ <b>A2</b> .U1+ <b>B2</b> .U2+ <b>C2</b><br>.U3 | COMB. 1 – TEMP. 2 –<br>DEC | OPE               | -            | CASOS DE<br>OPERAÇÃO EM                                                                                      |
| L31 | W+T2+P1+D2+A2.U1+B2.U2-<br>C2.U3                           | COMB. 2 – TEMP. 2 –<br>DEC | OPE               | -            | TEMPERATURA<br>DE PROJETO                                                                                    |
| L32 | W+T2+P1+D2+ <b>A2</b> .U1-<br><b>B2</b> .U2+ <b>C2</b> .U3 | COMB. 3 – TEMP. 2 –<br>DEC | OPE               | -            | MÍNIMA<br>COMBINADOS                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | CASO DE CARREGAMENTO                                                                                                                                                    | DESCRIÇÃO                                                                          | TIPO DE | N°     | OBSERVAÇÕES        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------|--------|--------------------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                                                                                                                                         |                                                                                    | TENSAO  | CICLOS | OBSERTIÇÕES        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L33         | W+T2+P1+D2+ <b>A2</b> .U1- <b>B2</b> .U2-<br><b>C2</b> .U3                                                                                                              | COMB. 4 – TEMP. 2 –<br>DEC                                                         | OPE     | -      | COM<br>ACELERAÇÕES |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L34         | W+T2+P1+D2-                                                                                                                                                             | COMB. 5 – TEMP. 2 –                                                                | OPE     | -      | DE DEC             |
| L35     W+12+H1-D2-A2_U1-<br>C2_U3     COMB. 5 - TENP. 2 -<br>DEC     OPE     -       L36     W+12+H1-D2-A2_U1-<br>B2_U2_C2_U3     COMB. 5 - TENP. 2 -<br>DEC     OPE     -       L37     W+12+H1-D2-A2_U1-B2_U2-<br>C2_U3     COMB. 5 - TENP. 2 -<br>DEC     OPE     -       L38     L_22+L1     +A2_U1+B2_U2+C2_U3     SUS     -       L40     L24+L1     +A2_U1+B2_U2+C2_U3     SUS     -       L41     L25+L1     +A2_U1+B2_U2+C2_U3     SUS     -       L42     L26+L1     -A2_U1+B2_U2+C2_U3     SUS     -       L43     L27+L1     -A2_U1+B2_U2+C2_U3     SUS     -       L44     L28+L1     -A2_U1+B2_U2+C2_U3     SUS     -       L45     L29+L1     -A2_U1+B2_U2+C2_U3     SUS     -       L44     L30+L2     +A2_U1+B2_U2+C2_U3     SUS     -       L44     L32+L2     +A2_U1+B2_U2+C2_U3     SUS     -       L45     L39+L2     +A2_U1+B2_U2+C2_U3     SUS     -       L50     L34+L2     -A2_U1+B2_U2+C2_U3     SUS     -  <                                                                                           |             | $\frac{\mathbf{A2.01} + \mathbf{D2.02} + \mathbf{C2.03}}{\mathbf{W} + \mathbf{T2} + \mathbf{D1} + \mathbf{D2} + \mathbf{A2} + \mathbf{H1} + \mathbf{B2} + \mathbf{H2}}$ | COMB 6 TEMP 2                                                                      |         |        |                    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L35         | <b>C2</b> .U3                                                                                                                                                           | DEC                                                                                | OPE     | -      |                    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L36         | W+T2+P1+D2-A2.U1-                                                                                                                                                       | COMB. 7 – TEMP. 2 –                                                                | OPE     | _      |                    |
| L37     W+12+P1+D2-A2.U1-B2.U2-<br>C.U3     COMB. 8 - TEMP. 2 -<br>DEC     OPE     .       L38     1.22+L1     +A2.U1+B2.U2+C2.U3     SUS     .     ALGÉBRICA       L40     L.23+L1     +A2.U1+B2.U2+C2.U3     SUS     .     ALGÉBRICA       L41     1.23+L1     +A2.U1+B2.U2+C2.U3     SUS     .     ACELERAÇÕES       L42     L26-L1     -A2.U1+B2.U2+C2.U3     SUS     .     COMBINAÇÃO       L43     L27-L1     -A2.U1+B2.U2+C2.U3     SUS     .     COMBINAÇÃO       L44     L28-L1     -A2.U1+B2.U2+C2.U3     SUS     .     PROJETO       L44     L28-L1     -A2.U1+B2.U2+C2.U3     SUS     .     MÁXIMA       L45     L29-L1     -A2.U1+B2.U2+C2.U3     SUS     .     ACELERAÇÕES       L50     L34+L2     -A2.U1+B2.U2+C2.U3     SUS     .     DE DEC NA       L51     L36-L2     -A2.U1+B2.U2+C2.U3     SUS     .     DE DEC NA       L51     L36+L2     -A2.U1+B2.U2+C2.U3     SUS     .     CONDICÇÃO DE       L53                                                                                                       | 100         | <b>B2</b> .U2+ <b>C2</b> .U3                                                                                                                                            | DEC                                                                                |         |        |                    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L37         | W+T2+P1+D2-A2.U1-B2.U2-<br>C2 U3                                                                                                                                        | COMB. 8 – TEMP. 2 –                                                                | OPE     | -      |                    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I 38        | U22_U1                                                                                                                                                                  | $+ \mathbf{A2} \text{ II} 1 + \mathbf{B2} \text{ II} 2 + \mathbf{C2} \text{ II} 3$ | SUS     |        | COMBINIAÇÃO        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L30         | L22-L1<br>L 23-L 1                                                                                                                                                      | +A2 II1+B2 II2-C2 II3                                                              | SUS     |        |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L37<br>I 40 | L25-L1                                                                                                                                                                  | +A2.01+B2.02-C2.03<br>+A2.111-B2.112+C2.113                                        | SUS     |        |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L40<br>I /1 |                                                                                                                                                                         | +A2.01-B2.02+C2.03                                                                 | SUS     |        | ACELERACÕES        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I 42        | L25-L1                                                                                                                                                                  | $+\mathbf{A2}.01-\mathbf{B2}.02-\mathbf{C2}.03$                                    | SUS     |        | DE DEC NA          |
| 1.44     1.28-L1     -A2.01-B2.02+C2.03     SUS     -     PROJETO       1.45     1.29-L1     -A2.01-B2.02+C2.03     SUS     -     MÁXIMA       1.46     1.30-L2     +A2.01+B2.02+C2.03     SUS     -     MÁXIMA       1.46     1.30-L2     +A2.01+B2.02+C2.03     SUS     -     ALGÉBRICA       1.47     L31-L2     +A2.01+B2.02+C2.03     SUS     -     ALGÉBRICA       1.48     L32-L2     +A2.01+B2.02+C2.03     SUS     -     ALGÉBRICA       1.49     L33-L2     +A2.01+B2.02+C2.03     SUS     -     DE DEC NA       1.50     L34+L2     -A2.01+B2.02+C2.03     SUS     -     DE DEC NA       1.51     L35-L2     -A2.01+B2.02+C2.03     SUS     -     CONDICÇÃO DE       1.51     L35-L2     -A2.01+B2.02+C2.03     SUS     -     CONDICÇÃO DE       1.52     L36-L2     -A2.01+B2.02+C2.03     SUS     -     MÁX.     -       1.52     L39,L47     .     -     A2.01+B2.02+C2.03     SUS     - <td< td=""><td>I 43</td><td>L20-L1</td><td>-A2  III + B2  II2 - C2  II3</td><td>SUS</td><td></td><td>CONDICCÃO DE</td></td<> | I 43        | L20-L1                                                                                                                                                                  | -A2  III + B2  II2 - C2  II3                                                       | SUS     |        | CONDICCÃO DE       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I.44        | <u> </u>                                                                                                                                                                | -A2  III -B2  II 2+C2  II 3                                                        | SUS     |        | PROJETO            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L44         | L29-L1                                                                                                                                                                  | -A2 III-B2 II2-C2 II3                                                              | SUS     | _      | MÁXIMA             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L 46        | L 30-L 2                                                                                                                                                                | +A2 U1+B2 U2+C2 U3                                                                 | SUS     | _      | COMBINAÇÃO         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L47         | L30 L2                                                                                                                                                                  | +A2  U1+B2  U2-C2  U3                                                              | SUS     | _      | AI GÉBRICA         |
| L49     L33-L2     +A2.U1+B2.U2-C2.U3     SUS     -     ACELERAÇÕES       L50     L34-L2     -A2.U1+B2.U2-C2.U3     SUS     -     CONDICÇÃO DE       L51     L35-L2     -A2.U1+B2.U2-C2.U3     SUS     -     CONDICÇÃO DE       L51     L35-L2     -A2.U1+B2.U2-C2.U3     SUS     -     CONDICÇÃO DE       L52     L36-L2     -A2.U1-B2.U2-C2.U3     SUS     -     PROJETO       L53     L37-L2     -A2.U1-B2.U2-C2.U3     SUS     -     MÍNIMA       L54     L38, L46     MÁX.     -     MÁX.     -       L62     L40, L48     MÁX.     -     MÁX.     -       L55     L39, L47     MÁXIMA     MÁX.     -     CASO DE       L62     L41, L49     ACELERAÇÃO     MÁX.     -     CASO DE       L61     L43, L53     MÁX.     -     MÁX.     -       L62     FACEL DOC L54     MÁX.     -     MÁX.     -       L62     FACEL DOC L55     MÁXIMA     MÁX.     - <td>L48</td> <td>L32-L2</td> <td>+A2  U1-B2 U2+C2 U3</td> <td>SUS</td> <td>_</td> <td>PARA</td>                                                                        | L48         | L32-L2                                                                                                                                                                  | +A2  U1-B2 U2+C2 U3                                                                | SUS     | _      | PARA               |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L49         | L33-L2                                                                                                                                                                  | +A2.U1-B2.U2-C2.U3                                                                 | SUS     | _      | ACELERAÇÕES        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L50         | L34-L2                                                                                                                                                                  | -A2.U1+B2.U2+C2.U3                                                                 | SUS     | _      | DE DEC NA          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L51         | L35-L2                                                                                                                                                                  | -A2.U1+B2.U2-C2.U3                                                                 | SUS     | _      | CONDICCÃO DE       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L52         | L36-L2                                                                                                                                                                  | -A2.U1-B2.U2+C2.U3                                                                 | SUS     | -      | PROJETO            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L53         | L37-L2                                                                                                                                                                  | -A2.U1-B2.U2-C2.U3                                                                 | SUS     | -      | MÍNIMA             |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L54         | L38, L46                                                                                                                                                                |                                                                                    | MÁX.    | -      |                    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L55         | L39, L47                                                                                                                                                                | -                                                                                  | MÁX.    | -      |                    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L56         | L40, L48                                                                                                                                                                |                                                                                    | MÁX.    | -      |                    |
| L58     L42, L50     MÁXIMA     MÁX.     -     ACELERAÇÃO       L59     L43, L51     MÁX.     -     MÁX.     -     MÁX.     -       L60     L44, L52     MÁX.     -     MÁX.     -     MÁX.     -       L61     L45, L53     MÁX.     -     MÁX.     -     MÁX.     -       L62     FACEL.DOC L54     MÁX.     -     MÁX.     -     MÁX.     -       L64     FACEL.DOC L55     MÁX.     -     MÁX.     -     MÁX.     -       L65     FACEL.DOC L58     MÁX.     -     MÁX.     -     MÁX.     -       L66     FACEL.DOC L59     MÁX.     -     MÁX.     -     MÁX.     -     ACELERAÇÃO       L67     FACEL.DOC L60     MÁX.     -     MÁX.     -     MÁX.     -     ACELERAÇÃO     MÁX.     -     ACELERAÇÃO     MÁX.     -     ACELERAÇÃO     MÁX.     -     ACELERAÇÃO     ACELERAÇÃO     MÁX.     -     DESLOCAMENTOS                                                                                                                                                                                                          | L62         | L41, L49                                                                                                                                                                | ACELERAÇÃO                                                                         | MÁX.    | -      | CASO DE            |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L58         | L42, L50                                                                                                                                                                | MÁXIMA                                                                             | MÁX.    | -      | ACELERAÇÃO         |
| L60     L44, L52     MÁX.     -       L61     L45, L53     MÁX.     -       L62     FACEL_DOC L54     MÁX.     -       L62     FACEL_DOC L55     MÁX.     -       L64     FACEL_DOC L56     MÁX.     -       L65     FACEL_DOC L56     MÁX.     -       L66     FACEL_DOC L58     MÁX.     -       L67     FACEL_DOC L59     MÁX.     -       L68     FACEL_DOC L60     MÁX.     -       L69     FACEL_DOC L61     MÁX.     -       DESLOCAMENTOS ESTRUTURAIS       CASOS DE<br>OPERAÇÃO -<br>CONDIÇÃO DE<br>PROJETO MÁXIMA –<br>SAGGING – DOC       L70     W+T1+P1+D1+D8     OPERAÇÃO –<br>CONDIÇÃO DE<br>PROJETO MÁXIMA –<br>SAGGING – DOC     OPE     -     CASOS DE<br>OPERAÇÃO<br>MÁXIMA E<br>MÍNIMA       L71     W+T1+P1+D1+D9     OPERAÇÃO –<br>CONDIÇÃO DE<br>PROJETO MÁXIMA –     OPE     -     CASOS DE<br>OPERAÇÃO<br>MÁXIMA E                                                                                                                                                                                         | L59         | L43, L51                                                                                                                                                                | -                                                                                  | MÁX.    | -      | MAXIMA – DEC       |
| $\begin{tabular}{ c c c c c } \hline L45, L53 & MÁX. & - \\ \hline L62 & F_{ACEL, DOC} L54 & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L60         | L44, L52                                                                                                                                                                | MÁX.                                                                               |         | -      |                    |
| $\begin{tabular}{ c c c c c c } \hline I62 & F_{ACEL, DOC} L54 & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L61         | L45, L53                                                                                                                                                                | -                                                                                  | MÁX.    | -      |                    |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L62         | FACEL. DOC L54                                                                                                                                                          |                                                                                    | MÁX.    | -      |                    |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L62         | F <sub>ACEL</sub> . DOC L55                                                                                                                                             |                                                                                    | MÁX.    | -      |                    |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L64         | F <sub>ACEL</sub> . DOC L56                                                                                                                                             |                                                                                    | MÁX.    | -      | CASODE             |
| L66FACEL. DOC L58MÁXIMAMÁXACLLENAÇÃOL67FACEL. DOC L59MÁXMÁXL68FACEL. DOC L60MÁXMÁXL69FACEL. DOC L61DESLOCAMENTOS ESTRUTURAISMÁXDESLOCAMENTOS ESTRUTURAISCONDIÇÃO DE<br>PROJETO MÁXIMA –<br>SAGGING – DOCOPE<br>PROJETO MÁXIMA –<br>SAGGING – DOCCASOS DE<br>OPERAÇÃO<br>MÁXIMA E<br>MÁXIMA E<br>MÁXIMA EL71W+T1+P1+D1+D9OPERAÇÃO –<br>CONDIÇÃO DE<br>PROJETO MÁXIMA –<br>HOGGING – DOCOPE<br>OPE<br>COM-CASOS DE<br>OPERAÇÃO<br>MÁXIMA E<br>MÍNIMA<br>COMBINADOS<br>COM<br>DESLOCAMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L65         | F <sub>ACEL. DOC</sub> L62                                                                                                                                              | ACELERAÇÃO                                                                         | MÁX.    | -      |                    |
| L67FACEL. DOC L59MÁXL68FACEL. DOC L60MÁXL69FACEL. DOC L61MÁXDESLOCAMENTOS ESTRUTURAISCASOS DE<br>CONDIÇÃO DE<br>PROJETO MÁXIMA –<br>SAGGING – DOCL70W+T1+P1+D1+D8OPERAÇÃO –<br>CONDIÇÃO DE<br>PROJETO MÁXIMA –<br>SAGGING – DOCOPE-L71W+T1+P1+D1+D9OPERAÇÃO –<br>CONDIÇÃO DE<br>PROJETO MÁXIMA –<br>DOCOPE-CASOS DE<br>OPERAÇÃO<br>MÁXIMA E<br>MÍNIMA<br>COMBINADOS<br>COM<br>DESLOCAMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L66         | Facel. doc L58                                                                                                                                                          | MÁXIMA                                                                             | MÁX.    | -      | MÁXIMA – DOC       |
| L68FACEL. DOC L60MÁXL69FACEL. DOC L61MÁXDESLOCAMENTOS ESTRUTURAISDESLOCAMENTOS ESTRUTURAISL70W+T1+P1+D1+D8OPERAÇÃO -<br>CONDIÇÃO DE<br>PROJETO MÁXIMA -<br>SAGGING - DOCOPE-CASOS DE<br>OPERAÇÃO<br>MÁXIMA E<br>MÍNIMAL71W+T1+P1+D1+D9OPERAÇÃO -<br>CONDIÇÃO DE<br>PROJETO MÁXIMA -<br>DOPEOPE-CASOS DE<br>OPERAÇÃO<br>MÁXIMA E<br>MÍNIMAL71W+T1+P1+D1+D9OPERAÇÃO -<br>CONDIÇÃO DE<br>PROJETO MÁXIMA -<br>HOGGING - DOCOPE-COMBINADOS<br>COM<br>DESLOCAMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L67         | F <sub>ACEL</sub> . DOC L59                                                                                                                                             |                                                                                    | MÁX.    | -      |                    |
| L69FACEL. DOC L61MÁXDESLOCAMENTOS ESTRUTURAISL70W+T1+P1+D1+D8OPERAÇÃO -<br>CONDIÇÃO DE<br>PROJETO MÁXIMA -<br>SAGGING - DOCOPE-CASOS DE<br>OPERAÇÃO<br>MÁXIMA E<br>MÍNIMAL71W+T1+P1+D1+D9OPERAÇÃO -<br>CONDIÇÃO DE<br>PROJETO MÁXIMA -<br>DPENJETO MÁXIMA -<br>HOGGING - DOCOPE-CASOS DE<br>OPERAÇÃO<br>MÁXIMA E<br>MÍNIMA<br>COMBINADOS<br>CONDIÇÃO DE<br>PROJETO MÁXIMA -<br>HOGGING - DOCOPE-CASOS DE<br>OPERAÇÃO<br>MÁXIMA E<br>MÍNIMA<br>COMBINADOS<br>CONDIÇÃO DE<br>PROJETO MÁXIMA -<br>HOGGING - DOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L68         | FACEL. DOC L60                                                                                                                                                          |                                                                                    | MÁX.    | -      |                    |
| DESLOCAMENTOS ESTRUTURAISL70W+T1+P1+D1+D8OPERAÇÃO -<br>CONDIÇÃO DE<br>PROJETO MÁXIMA -<br>SAGGING - DOCOPE<br>OPE<br>CASOS DE<br>OPERAÇÃO<br>MÁXIMA E<br>MÍNIMAL71W+T1+P1+D1+D9OPERAÇÃO -<br>CONDIÇÃO DE<br>PROJETO MÁXIMA -<br>HOGGING - DOCOPE<br>OPE-CASOS DE<br>OPERAÇÃO<br>MÁXIMA E<br>MÍNIMA<br>COMBINADOS<br>COM<br>DESLOCAMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L69         | FACEL. DOC L61                                                                                                                                                          |                                                                                    | MÁX.    | -      |                    |
| L70W+T1+P1+D1+D8OPERAÇÃO -<br>CONDIÇÃO DE<br>PROJETO MÁXIMA -<br>SAGGING - DOCOPE-CASOS DE<br>OPERAÇÃO<br>MÁXIMA E<br>MÍNIMAL71W+T1+P1+D1+D9OPERAÇÃO -<br>CONDIÇÃO DE<br>PROJETO MÁXIMA -<br>HOGGING - DOCOPE-COMBINADOS<br>COM<br>DESLOCAMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | DES                                                                                                                                                                     | LOCAMENTOS ESTRUTU                                                                 | JRAIS   |        |                    |
| L70W+T1+P1+D1+D8CONDIÇÃO DE<br>PROJETO MÁXIMA -<br>SAGGING - DOCOPE-OPERAÇÃO<br>MÁXIMA E<br>MÍNIMAL71W+T1+P1+D1+D9OPERAÇÃO -<br>CONDIÇÃO DE<br>PROJETO MÁXIMA -<br>HOGGING - DOCOPE-CONBINADOS<br>CONBINADOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                         | OPERAÇÃO –                                                                         |         |        |                    |
| L70 W+T1+P1+D1+D0 PROJETO MÁXIMA –<br>SAGGING – DOC OT L OT L   L71 W+T1+P1+D1+D9 OPERAÇÃO –<br>CONDIÇÃO DE<br>PROJETO MÁXIMA –<br>HOGGING – DOC OPE - MÁXIMA E<br>MÍNIMA<br>COMBINADOS<br>COM<br>DESLOCAMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L70         | W+T1+P1+D1+D8                                                                                                                                                           | CONDIÇÃO DE                                                                        | OPF     | _      | OPERACÃO           |
| L71 W+T1+P1+D1+D9 SAGGING – DOC MINIMA   PROJETO MÁXIMA – OPE - MÍNIMA   CONDIÇÃO DE OPE - COMBINADOS   DESLOCAMENT HOGGING – DOC DESLOCAMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | ······································                                                                                                                                  | PROJETO MAXIMA –                                                                   |         |        | MÁXIMA E           |
| L71 W+T1+P1+D1+D9 OPERAÇAO –<br>CONDIÇÃO DE<br>PROJETO MÁXIMA –<br>HOCGING DOC OPE - COMBINADOS<br>COM<br>DESLOCAMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                                                                                                                                                         | SAGGING – DOC                                                                      |         |        | MÍNIMA             |
| L71W+T1+P1+D1+D9CONDIÇÃO DE<br>PROJETO MÁXIMA -<br>HOGGING DOCOPE<br>OPE-COM<br>DESLOCAMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                                                                                                                                                         | OPERAÇÃO –                                                                         |         |        | COMBINADOS         |
| PROJETO MAXIMA – DESLOCAMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L71         | W+T1+P1+D1+D9                                                                                                                                                           |                                                                                    | OPE     | -      | COM                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                                                                                                                                                         | HOGGING – DOC                                                                      |         |        | DESLOCAMENT        |

|     | CASO DE CARREGAMENTO | DESCRIÇÃO                                                                                                  | TIPO DE<br>TENSÃO | N°<br>CICLOS | OBSERVAÇÕES                                                     |
|-----|----------------------|------------------------------------------------------------------------------------------------------------|-------------------|--------------|-----------------------------------------------------------------|
| L72 | W+T2+P1+D2+D8        | OPERAÇÃO –<br>CONDIÇÃO DE<br>PROJETO MÍNIMA –<br>SAGGING – DOC                                             | OPE               | -            | OS DE SAG E<br>HOG PARA DOC                                     |
| L73 | W+T2+P1+D2+D9        | OPERAÇÃO –<br>CONDIÇÃO DE<br>PROJETO MÍNIMA –<br>HOGGING – DOC                                             | OPE               | -            |                                                                 |
| L74 | L70-L1               | D10 – TEMP. 1 (SAG)                                                                                        | EXP               | -            | COMBINAÇÕES                                                     |
| L75 | L71-L1               | D11 – TEMP. 1 (HOG)                                                                                        | EXP               | -            | ALGÉBRICAS                                                      |
| L76 | L72-L2               | D10 – TEMP. 2 (SAG)                                                                                        | EXP               | -            | DOS CASOS DE                                                    |
| L77 | L73-L2               | D11 – TEMP. 2 (HOG)                                                                                        | EXP               | -            | OPE+DESLOCAM<br>ENTOS COM OPE<br>NORMAL (DOC)                   |
| L78 | L74, L76             | Maior Caso de<br>Deslocamento de SAG p/<br>DOC                                                             | MÁX               | -            | MAIOR CASO DE<br>DESLOCAMENT<br>O DE SAG – DOC                  |
| L79 | L75, L77             | Maior Caso de<br>Deslocamento de HOG p/<br>DOC                                                             | MÁX               | -            | MAIOR CASO DE<br>DESLOCAMENT<br>O DE HOG – DOC                  |
| L80 | L78-L79              | Maior caso de SAG<br>menos maior caso de<br>HOG p/ DOC                                                     | EXP               | -            | MAIOR CASO DE<br>SAG – MAIOR<br>CASO DE HOG<br>(DOC)            |
| L81 | 0,6 x 1,0 x L80      | Carregamento<br>Dinâmico devido às<br>acelerações e fator de<br>altura de onda para<br>última faixa de DOC | EXP               | -            | -                                                               |
| L82 | W+T1+P1+D1+D10       | OPERAÇÃO –<br>CONDIÇÃO DE<br>PROJETO MÁXIMA –<br>SAGGING – DEC                                             | OPE               | -            | CASOS DE                                                        |
| L83 | W+T1+P1+D1+D11       | OPERAÇÃO –<br>CONDIÇÃO DE<br>PROJETO MÁXIMA –<br>HOGGING – DEC                                             | OPE               | -            | OPERAÇÃO<br>MÁXIMA E<br>MÍNIMA                                  |
| L84 | W+T2+P1+D2+D10       | OPERAÇÃO –<br>CONDIÇÃO DE<br>PROJETO MÍNIMA –<br>SAGGING – DEC                                             | OPE               | -            | COMBINADOS<br>COM<br>DESLOCAMENT<br>OS DE SAG E<br>HOG PAPA DEC |
| L85 | W+T2+P1+D2+D11       | OPERAÇÃO –<br>CONDIÇÃO DE<br>PROJETO MÍNIMA –<br>HOGGING – DEC                                             | OPE               | -            | HOU FARA DEC                                                    |
| L86 | L82-L1               | D10 – TEMP. 1 (SAG)                                                                                        | EXP               | -            | COMBINAÇÕES                                                     |
| L87 | L83-L1               | D11 – TEMP. 1 (HOG)                                                                                        | EXP               | -            | ALGÉBRICAS                                                      |
| L88 | L84-L2               | D10 – TEMP. 2 (SAG)                                                                                        | EXP               | -            | DOS CASOS DE                                                    |
| L89 | L85-L2               | D11 – TEMP. 2 (HOG)                                                                                        | EXP               | -            | OPE+DESLOCAM<br>ENTOS COM OPE<br>NORMAL (DEC)                   |

|     | CASO DE CARREGAMENTO | DESCRIÇÃO                                                                                                  | TIPO DE<br>TENSÃO | N°<br>CICLOS | OBSERVAÇÕES                                          |
|-----|----------------------|------------------------------------------------------------------------------------------------------------|-------------------|--------------|------------------------------------------------------|
| L90 | L86, L88             | Maior Caso de<br>Deslocamento de SAG p/<br>DEC                                                             | MÁX               | -            | MAIOR CASO DE<br>DESLOCAMENT<br>O DE SAG – DEC       |
| L91 | L87, L89             | Maior Caso de<br>Deslocamento de HOG p/<br>DEC                                                             | MÁX               | -            | MAIOR CASO DE<br>DESLOCAMENT<br>O DE HOG – DEC       |
| L92 | L90-L91              | Maior caso de SAG<br>menos maior caso de<br>HOG p/ DEC                                                     | EXP               | -            | MAIOR CASO DE<br>SAG – MAIOR<br>CASO DE HOG<br>(DEC) |
| L93 | 0,6 x 1,0 x L93      | Carregamento<br>Dinâmico devido às<br>acelerações e fator de<br>altura de onda para<br>última faixa de DEC | EXP               | -            | -                                                    |

onde:

- W Peso da tubulação + fluido;
- T1 Temperatura de Projeto Máxima;
- T2 Temperatura de Projeto Mínima;
- P1 Pressão de Projeto;

D1 – Deslocamentos impostos na tubulação para condição de Projeto Máxima (provenientes de um equipamento);

D2 – Deslocamentos impostos na tubulação para condição de Projeto Mínima (provenientes de um equipamento);

- D8 Deslocamentos devido ao movimento de SAGGING para DOC;
- D9 Deslocamentos devido ao movimento de HOGGING para DOC;
- D10 Deslocamentos devido ao movimento de SAGGING para DEC;
- D11 Deslocamentos devido ao movimento de HOGGING para DEC;
- U1 vetor aceleração surge;
- U2-vetor aceleração sway;
- U3 vetor aceleração heave;
- A1/B1/C1 Aceleração para DOC conforme Acceleration Data;
- A2/B2/C2 Aceleração para DEC conforme Acceleration Data.

## **CAPÍTULO VII**

### 7.1 APLICAÇÃO DOS PROCEDIMENTOS DE FADIGA

Este capítulo apresenta os resultados obtidos a partir da adoção dos procedimentos apresentados no capítulo anterior buscando propiciar um melhor entendimento dos mesmos. Conclui-se que suas aplicações trazem ganhos significativos, tanto nos resultados de dano, uma vez utilizado o procedimento baseado no Critério do Acúmulo de Dano, quanto na redução do número de casos de carregamento e maior precisão do resultado, quando aplicado o critério da Tensão Admissível.

#### 7.1.1 Procedimento de Análise de Fadiga baseado no Critério do Acúmulo de Dano

Conforme apresentado anteriormente, o procedimento aqui proposto traz a aplicação dos fatores de altura de onda também para as acelerações. A seguir serão demonstrados os resultados para os dois cenários, sendo o primeiro sem a aplicação dos fatores de altura de onda para as acelerações, conforme considerado no projeto executado e o segundo contemplando a aplicação dos fatores de altura de onda também para esta fonte de fadiga.

A Tabela 75 corresponde ao dano acumulado encontrado na análise de flexibilidade do projeto, conforme apresentado no estudo de caso apresentado na seção 5.1.2 do Capítulo V. Deve-se ressaltar que conforme explicado no Capítulo V, os fatores de altura de onda utilizados pela empresa projetista no sistema de tubulações do referido estudo de caso não são proporcionais à altura de onda. Os valores adotados são inferiores aos fatores proporcionais à altura de onda.

| CONDIÇÃO | FAIXA | FATOR | DANO | %     |
|----------|-------|-------|------|-------|
|          | 1     | 0,05  | 0,67 | 18,26 |
|          | 2     | 0,10  | 0,78 | 21,25 |
|          | 3     | 0,20  | 0,65 | 17,71 |
| DOC      | 4     | 0,30  | 0,34 | 9,26  |
|          | 5     | 0,50  | 0,40 | 10,90 |
|          | 6     | 0,70  | 0,32 | 8,72  |
|          | 7     | 1,00  | 0,36 | 9,81  |
|          | 8     | 0,60  | 0,09 | 2,45  |
| DEC      | 9     | 0,80  | 0,06 | 1,63  |
|          | 10    | 1,00  | 0,00 | 0,00  |
|          | TOTAL |       | 3,67 |       |

Tabela 75 Resultado de dano com fator de altura aplicado somente para os deslocamentos.

O dano acumulado de 3,67 ocorre na conexão do tipo "tê" forjado representada pelo nó 440, conforme Figura 77.



Fig. 77 Indicação da conexão tipo "tê" na qual foi encontrado o dano de 3,67 de acordo com o projeto executado. Fonte: (S/D).

Através do *software* CAESAR II, um novo estudo, agora com a aplicação dos fatores de altura de onda também para as acelerações, foi realizado. O dano encontrado através da simulação apresenta uma expressiva diminuição, conforme apresentado na Tabela 76.

| CONDIÇÃO | FAIXA | FATOR | DANO | %    |
|----------|-------|-------|------|------|
|          | 1     | 0,05  | 0,00 | 0,00 |
|          | 2     | 0,10  | 0,05 | 0,03 |
|          | 3     | 0,20  | 0,34 | 0,18 |
| DOC      | 4     | 0,30  | 0,29 | 0,15 |
|          | 5     | 0,50  | 0,40 | 0,21 |
|          | 6     | 0,70  | 0,32 | 0,17 |
|          | 7     | 1,00  | 0,36 | 0,19 |
|          | 8     | 0,60  | 0,07 | 0,04 |
| DEC      | 9     | 0,80  | 0,05 | 0,03 |
|          | 10    | 1,00  | 0,00 | 0,03 |
|          | TC    | TAL   | 1,89 |      |

Tabela 76 Resultado de dano com fator de altura de onda aplicado para os deslocamentos e acelerações.

Desta forma, conclui-se que é possível uma redução da ordem de 48% com a aplicação dos fatores de altura de onda para as acelerações.

### 7.2 Procedimento de Análise de Fadiga baseado no Critério da Tensão Admissível

Este item apresenta os resultados obtidos com a aplicação do critério da tensão admissível, também para o estudo de caso 5.2 apresentado no Capítulo V desta dissertação. Entretanto, primeiramente, busca-se a confirmação dos resultados entre o critério baseado no acúmulo de dano conforme aplicado ao estudo de caso citado acima e o critério da tensão admissível, buscando, a cada etapa do desenvolvimento, relacionar os casos da Tabela 74.

| CONDIÇÃO | FAIXA | FATOR DE<br>ALTURA DE<br>ONDA | 3D STRESS INTENSITY<br>(MPa) |
|----------|-------|-------------------------------|------------------------------|
| DOC      | 7     | 1,0                           | 141,7                        |
| DEC      | 10    | 1,0                           | 166,7                        |

| Tabela // 3D stress <i>intensity</i> para deslocament |
|-------------------------------------------------------|
|-------------------------------------------------------|

Para as acelerações, devido às variações das tensões causadas pelas oito possíveis combinações, e também, devido ao método de cálculo do *software*, devem ser determinadas as tensões *3D stress intensity* dos casos de deslocamentos isoladamente tanto para as acelerações de DOC, quanto para as acelerações de DEC, conforme saída de dados do *software* CAESAR II apresentada na Tabela 78.

| CONDIÇÃO | COMBINAÇÃO | 3D STRESS<br>INTENSITY<br>(MPa) | NÓ  | RATIO | CASO DE<br>CARGA |
|----------|------------|---------------------------------|-----|-------|------------------|
|          | U1+U2+U3   | 19,6                            | 440 | 61,5  | L197             |
|          | U1+U2-U3   | 32,9                            | 440 | 103,4 | L198             |
|          | U1-U2+U3   | 19,1                            | 440 | 59,9  | L199             |
| DOC      | U1-U2-U3   | 18,0                            | 440 | 56,6  | L200             |
| DOC      | -U1+U2+U3  | 16,4                            | 440 | 51,4  | L201             |
|          | -U1+U2-U3  | 30,4                            | 440 | 95,2  | L202             |
|          | -U1-U2+U3  | 17,9                            | 440 | 56,2  | L203             |
|          | -U1-U2-U3  | 15,1                            | 440 | 47,2  | L204             |
|          | U1+U2+U3   | 32,2                            | 440 | 4,9   | L189             |
|          | U1+U2-U3   | 79,1                            | 440 | 12,1  | L190             |
|          | U1-U2+U3   | 59,4                            | 440 | 9,1   | L191             |
| DEC      | U1-U2-U3   | 47,8                            | 440 | 7,3   | L192             |
| DEC      | -U1+U2+U3  | 29,6                            | 440 | 4,5   | L193             |
|          | -U1+U2-U3  | 77,3                            | 440 | 11,8  | L194             |
|          | -U1-U2+U3  | 54,2                            | 440 | 8,3   | L195             |
|          | -U1-U2-U3  | 44,5                            | 440 | 6,8   | L196             |

Tabela 78 3D stress intensity para acelerações.

A partir das oito combinações dos vetores acelerações, a intensidade de tensão desta fonte de fadiga deve ser calculada a partir da média entre as maiores razões de cada caso,

obtidos para um mesmo ponto nodal. A Tabela 80 apresenta as médias das tensões produzidas pelas acelerações encontradas para DOC e DEC do estudo de caso 5.1.2 apresentado no Capítulo V.

|          |            | <b>3D STRESS</b> |
|----------|------------|------------------|
| CONDIÇÃO | COMBINAÇÃO | INTENSITY        |
|          |            | (MPa)            |
|          | MAIOR      | 32,9             |
| DOC      | MENOR      | 15,1             |
|          | MÉDIA      | 24,0             |
|          | MAIOR      | 79,1             |
| DEC      | MENOR      | 29,6             |
|          | MÉDIA      | 54,4             |

Tabela 79 Médias das tensões - Acelerações.

A Tabela 7.6 apresenta o resultado do somatório das tensões *3D stress intensity* calculadas para o deslocamento estrutural, e também, para a média entre as acelerações tanto para a condição DOC quanto para a condição DEC.

Tabela 80 Somatório das tensões de deslocamentos e acelerações para DOC e DEC.

| CONDIÇÃO | FONTE        | 3D STRESS<br>INTENSITY (MPa) |  |
|----------|--------------|------------------------------|--|
|          | DESLOCAMENTO | 141,7                        |  |
| DOC      | ACELERAÇÃO   | 24,0                         |  |
|          | TOTAL        | 165,7                        |  |
|          | DESLOCAMENTO | 166,7                        |  |
| DEC      | ACELERAÇÃO   | 54,4                         |  |
|          | TOTAL        | 221,05                       |  |

Obtidos os valores de tensão de 221,05 MPa relativa ao somatório das tensões devido aos deslocamentos e acelerações para a condição DEC, bem como a tensão de 165,70 MPa relativa ao somatório das tensões devido aos deslocamentos e acelerações para a condição DOC, é possível calcular o dano acumulado a partir da curva S-N (Equação 7) para a curva F3 da norma DNV RP C203. Os resultados estão apresentados na Tabela 81. Os valores de tensões indicados nos campos sombreados correspondem aos valores de tensão total para DOC e DEC.

Tabela 81 Dano acumulado a partir da Curva S-N.

| Faixa | H (m) | Ciclos | Fator<br>Altura de | DT (MPa) | N falha F3 | Dano por<br>H | Dano por<br>H (%) |
|-------|-------|--------|--------------------|----------|------------|---------------|-------------------|
|-------|-------|--------|--------------------|----------|------------|---------------|-------------------|

|    |    |       |          | Onda<br>(projeto<br>executado) |        |               |      |      |
|----|----|-------|----------|--------------------------------|--------|---------------|------|------|
| 1  | 0  | 2     | 46272120 | 0,05                           | 8,285  | 9.650.224.932 | 0,00 | 0,1  |
| 2  | 2  | 3     | 35488448 | 0,1                            | 16,57  | 301.569.529   | 0,12 | 3,3  |
| 3  | 3  | 4     | 7843648  | 0,2                            | 33,14  | 9.659.230     | 0,81 | 22,5 |
| 4  | 4  | 5     | 1477896  | 0,3                            | 49,71  | 2.861.994     | 0,52 | 14,3 |
| 5  | 5  | 6     | 427600   | 0,5                            | 82,85  | 618.191       | 0,69 | 19,2 |
| 6  | 6  | 7     | 127200   | 0,7                            | 115,99 | 225.288       | 0,56 | 15,7 |
| 7  | 7  | 8     | 48448    | 1                              | 165,7  | 77.274        | 0,63 | 17,4 |
| 8  | 8  | 9     | 23024    | 0,6                            | 132,63 | 150.687       | 0,15 | 4,2  |
| 9  | 9  | 10    | 7272     | 0,8                            | 176,84 | 63.571        | 0,11 | 3,2  |
| 10 | 10 | 10,25 | 1        | 1                              | 221,05 | 32.548        | 0,00 | 0,0  |
|    |    |       |          |                                |        | DANO<br>TOTAL | 3,60 |      |

Observa-se o dano acumulado de 3,60. O erro identificado em relação ao cálculo realizado no CAESAR II foi de 1% conforme mostra a Tabela 82 .

### Tabela 82 Dano Caesar x Dano Curva S-N.

|          | DANO   |           |
|----------|--------|-----------|
| CURVA F3 | CAESAR | DIFERENÇA |
| 3,60     | 3,64   | 1%        |

A tensão da condição DEC para a ocorrência de um dano de 0,6 deveria ser de 130,5 MPa, conforme observado na Tabela 83. Entretanto, é importante ressaltar que deverá ser contemplado neste cálculo o dano devido à fadiga térmica, e também, o dano devido às operações de *loading* e *offloading* da plataforma.

Tabela 83 Tensão admissível para dano total de 0,6.

| Faixa | Н | (m) | Ciclos   | Fator<br>Altura de<br>Onda<br>(projeto<br>executado) | DT (MPa) | N falha F3      | Dano por<br>H | Dano por<br>H (%) |
|-------|---|-----|----------|------------------------------------------------------|----------|-----------------|---------------|-------------------|
| 1     | 0 | 2   | 46272120 | 0,05                                                 | 4,89     | 134.211.924.228 | 0,00          | 0,1               |
| 2     | 2 | 3   | 35488448 | 0,1                                                  | 9,79     | 4.194.122.632   | 0,01          | 1,4               |
| 3     | 3 | 4   | 7843648  | 0,2                                                  | 19,58    | 131.066.332     | 0,06          | 10,0              |
| 4     | 4 | 5   | 1477896  | 0,3                                                  | 29,36    | 17.259.764      | 0,09          | 14,3              |
| 5     | 5 | 6   | 427600   | 0,5                                                  | 48,94    | 2.999.678       | 0,14          | 23,9              |
| 6     | 6 | 7   | 127200   | 0,7                                                  | 68,51    | 1.093.177       | 0,12          | 19,5              |
| 7     | 7 | 8   | 48448    | 1                                                    | 97,88    | 374.960         | 0,13          | 21,6              |
| 8     | 8 | 9   | 23024    | 0,6                                                  | 78,30    | 732.343         | 0,03          | 5,3               |

| Faixa | Н  | (m)   | Ciclos | Fator<br>Altura de<br>Onda<br>(projeto<br>executado) | DT (MPa) | N falha F3 | Dano por<br>H | Dano por<br>H (%) |
|-------|----|-------|--------|------------------------------------------------------|----------|------------|---------------|-------------------|
| 9     | 9  | 10    | 7272   | 0,8                                                  | 104,40   | 308.957    | 0,02          | 3,9               |
| 10    | 10 | 10,25 | 1      | 1                                                    | 130,5    | 158.186    | 0,00          | 0,0               |
|       |    |       |        |                                                      |          | DANO TOTAL | 0,60          |                   |

Importante ressaltar que até aqui, os fatores de alturas considerados nos estudos demonstrados neste subitem correspondem aos fatores aplicados ao projeto executado, já que o objetivo até o momento é de validar o resultado de dano do *software* através da curva S-N.

A Tabela 84 apresenta o resultado da tensão admissível para o dano aproximado de 1,0 com a aplicação dos fatores de altura do maior agrupamento de onda, de 0,5 em 0,5 metro.

| Tabela 84 Tensão admissível para dano total aproxi | mado de 1,0 com agrupamento | de altura de |
|----------------------------------------------------|-----------------------------|--------------|
| onda de 0,5 em 0,5 metro.                          |                             |              |

| Faixa | Н   | (m)   | Ciclos   | Fator<br>Altura de<br>Onda | DT (MPa) | N falha F3      | Dano por<br>H | Dano por<br>H (%) |
|-------|-----|-------|----------|----------------------------|----------|-----------------|---------------|-------------------|
| 1     | 0   | 0,5   | 10110    | 0,06                       | 3,60     | 622.999.210.309 | 0,00          | 0,00              |
| 2     | 0,5 | 1     | 2036827  | 0,13                       | 7,80     | 13.047.490.417  | 0,00          | 0,00              |
| 3     | 1   | 1,5   | 16014605 | 0,19                       | 11,40    | 1.956.481.489   | 0,01          | 0,01              |
| 4     | 1,5 | 2     | 31849859 | 0,25                       | 15,00    | 496.070.846     | 0,06          | 0,12              |
| 5     | 2   | 2,5   | 22781434 | 0,31                       | 18,60    | 169.213.605     | 0,13          | 0,24              |
| 6     | 2,5 | 3     | 11429746 | 0,38                       | 22,80    | 61.140.047      | 0,19          | 0,34              |
| 7     | 3   | 3,5   | 4886331  | 0,44                       | 26,40    | 29.375.168      | 0,17          | 0,30              |
| 8     | 3,5 | 4     | 1860415  | 0,5                        | 30,00    | 15.502.214      | 0,12          | 0,22              |
| 9     | 4   | 4,5   | 7555793  | 0,56                       | 33,60    | 9.267.918       | 0,08          | 0,15              |
| 10    | 4,5 | 5     | 363352   | 0,63                       | 37,80    | 6.509.155       | 0,06          | 0,10              |
| 11    | 5   | 5,5   | 200725   | 0,69                       | 41,40    | 4.954.490       | 0,04          | 0,07              |
| 12    | 5,5 | 6     | 112281   | 0,75                       | 45,00    | 3.858.002       | 0,03          | 0,05              |
| 13    | 6   | 6,5   | 59504    | 0,81                       | 48,60    | 3.062.606       | 0,02          | 0,03              |
| 14    | 6,5 | 7     | 33871    | 0,88                       | 52,80    | 2.388.351       | 0,01          | 0,03              |
| 15    | 7   | 7,5   | 25186    | 0,94                       | 56,40    | 1.959.579       | 0,01          | 0,02              |
| 16    | 7,5 | 8     | 9156     | 1                          | 60,00    | 1.627.595       | 0,01          | 0,01              |
| 17    | 8   | 8,5   | 7516     | 0,83                       | 66,40    | 1.200.869       | 0,01          | 0,01              |
| 18    | 8,5 | 9     | 9624     | 0,88                       | 70,40    | 1.007.586       | 0,01          | 0,02              |
| 19    | 9   | 9,5   | 3234     | 0,93                       | 74,40    | 853.653         | 0,00          | 0,01              |
| 20    | 9,5 | 10    | 1229     | 0,98                       | 78,40    | 729.545         | 0,00          | 0,00              |
| 21    | 10  | 10,25 | 1        | 1                          | 80       | 686.641         | 0,00          | 0,00              |
|       |     |       |          |                            |          | DANO TOTAL      | 0,96          |                   |

Observa-se que a redução da tensão admissível é significativa ao se considerar um agrupamento de altura de onda mais refinado conforme pode ser constatado comparando os valores de dano total das Tabelas 83 e 84. Importante ressaltar que isso se deve aos diferentes fatores de altura considerados. Importante ressaltar que esta questão, que compreende na possibilidade de aplicação de fatores de alturas de ondas mais brandos, é uma sugestão de assunto a ser estudado em uma próxima dissertação, o qual deverá levar em consideração o período de tempo de aplicação das ondas relacionados às suas alturas.

## CAPÍTULO VIII

## 8.1 PROPOSTAS DE NOVOS ESTUDOS E CONCLUSÃO

Por se tratar de um fenômeno causador de grande quantidade de falhas em tubulações e devido ao fato das operações de navios produtores de óleo e gás terem se tornado cada vez mais intensas nos últimos anos, assuntos relacionados à fadiga em tubulações *offshore* são bastante corriqueiros no setor e ainda carecem de aspectos a serem abordados e aprofundados.

Importante ressaltar que este trabalho, que teve início a partir do projeto de pesquisa para a criação de uma proposta de procedimento padrão de análise de fadiga, contribui para um ciclo que contempla as fases complementares de um empreendimento *offshore*, abrangendo a construção e montagem, bem como operação e manutenção das plataformas.

Neste cenário, todas as fases estão inter-relacionadas e necessitam de constante verificação, tanto para averiguar a correlação entre elas, quanto possíveis necessidades de reavaliação, considerando novas premissas ou variáveis que possam surgir no percurso e que não foram previstas no estudo apresentado nesta dissertação. Esta circunstância merece relevância no sentido em que nem todos os aspectos foram suficientemente explorados durante a etapa de pesquisa de elaboração deste trabalho.

O estudo comparativo dos procedimentos de análise de fadiga em tubulações *offshore*, dos diferentes projetos de Engenharia já executados, constatou divergências de metodologia e parâmetros considerados, tais como fatores de altura de ondas, dano total acumulado, curva de fadiga, número de ciclos, casos de carregamentos, entre outros.

A atualização dos fatores intensificadores de tensões e flexibilidade conforme a norma ASME B31.J, publicada no ano de 2017, se faz estritamente necessária em sistemas de tubulações submetidas a significativos ciclos de deslocamentos e acelerações, uma vez que influenciam diretamente no resultado do dano acumulado. A utilização de fatores calculados conforme o apêndice D da norma ASME B31.3 pode apresentar uma variação de resultados tanto para o superdimensionamento, quanto para o subdimensionamento de sistemas de tubulações, o que leva a um cenário de atenção.

A aplicação de fatores de altura de onda também para as acelerações nos casos de carregamentos do critério do acúmulo do dano demonstrou uma redução significativa do dano encontrado no sistema de tubulações avaliado, o que representa uma maior aproximação da realidade, uma vez que essa fatoração já era considerada para os deslocamentos de SAG e HOG.

Finalmente, a proposição da nova metodologia de avaliação de fadiga baseada no critério da tensão admissível permite ao engenheiro a possibilidade de uma análise mais rápida,

com uma significativa diminuição da quantidade de casos de carregamentos, alcançando também, uma maior precisão do resultado, uma vez que o agrupamento de altura de onda considerado é aplicado conforme o METOCEAN DATA. Considera-se que esta proposta está alinhada com a filosofia de projeto da ASME B31.3 que é baseada em tensões admissíveis, conforme mostra o Apêndice W *High-Cycle Fatigue Assessment of Piping Systems* desta norma, disponibilizado recentemente. As simulações realizadas ao longo do trabalho demonstraram que a variação máxima dos resultados obtidos com o cálculo de dano a paritr da curva S-N em comparação ao resultado de dano identificado na saída de dados das análises de flexibilidade realizadas pelo *software* CAESAR II foi de no máximo 4%. Dessa forma, vislumbra-se a possibilidade de uma redução da quantidade de horas gastas relacionadas à análise de fadiga durante a elaboração dos próximos projetos de unidades *offshore*.

Um estudo mais aprofundado das relações das acelerações e deslocamentos provocados pelas ondas para as condições *Design Operation Condition* (DOC) e *Design Extreme Condition* (DEC) constituem um importante tema a ser estudado. A adoção de premissas que relacionam as acelerações e os deslocamentos da viga navio levam a uma significativa redução da quantidade de casos de carregamentos dos procedimentos propostos no Capítulo VI desta dissertação.

Tão importante quanto o tema exposto anteriormente está a obtenção dos fatores de altura de ondas que devem ser considerados nos casos de carregamentos. Ao longo dos estudos, observou-se que o conceito adotado em determinado projeto executado apresentou uma significativa variação em relação aos fatores utilizados nos demais projetos avaliados, bem como, em relação aos fatores adotados nas duas propostas de procedimentos apresentadas no Capítulo V. Em geral, a determinação destes fatores considera a relação linear entre altura de onda máxima da faixa e a altura da onda máxima da condição (DOC ou DEC). Esta hipótese, deve-se a falta de informações mais precisas sobre as relações entre altura de onda e as deformações estruturais e movimentos do FPSO. Tanto para o critério do acúmulo de dano quanto para o critério baseado na tensão admissível, uma possível diminuição destes fatores implica em um menor dano acumulado e maiores tensões admissíveis, respectivamente. E, consequentemente, maior liberdade do calculista de flexibilidade em aprovar o sistema de tubulações estudado.

## <u>CAPÍTULO IX</u>

## 9.1 REFERÊNCIAS BIBLIOGRÁFICAS

ALVES, Caio de Oliveira. Flambagem Térmica de Chapas Retangulares com Degraus de Espessura Uniformemente Aquecidas. Trabalho de Conclusão de Curso (Graduação) – Faculdade de Engenharia Naval, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2015.

ASKELAND, D. R.; FULAY, P. P.; WRIGHT, W. J. The Science and Engineering of Materials. 6. ed. Connecticut: Cengage Learning, 2010.

BAILONA, B. A. et al. Análise de Tensões em Tubulações Industriais para Engenheiros e **Projetistas**. Brasil: LTC, 2006.

British Standard BS 5500. Unfired Fusion Welded Pressure Vessels, 1997.

CAESAR II. User's Guide - Versão 7.0, abril de 2014.

DNV-RP-C203. *Fatigue* Design of Offshore Steel Structures. *Recommended Practice*, abril de 2010.

DNV-RP-C205. Environmental Conditions and Environmental Loads. *Recommended Practice*, outubro de 2010.

DNV-RP-C206. Fatigue Methodology of Offshore Ships. *Recommended Practice*, outubro de 2010.

DNVGL-RP-D101. Structural analysis of piping systems. Recommended Pratice, 2017.

Ellyin, F. Mean Stress Effect. Encyclopedia of Materials: Science and Technology, 2001.

GRAVUS, A; FRANCILLETTE, H. An Anisotropic Behaviour Analysis of AA2024 Aluminium Alloy Undergoing Large Plastic Deformations. European University of Brittany, National Institute of Applied Sciences, Rennes, p. 49-68, France, 2011.

HIBBELER, R.C. Resistência dos Materiais. 5. ed. São Paulo: Pearson Prentice Hall, 2006.

IGE/TD/12. **Piperwork Stress Analysis for Gas Industry Plant.** Recommendations on Transmission and Distribution Practice. 2. ed. Communication 1681, 2013.

LEE, Y. et al. Fatigue Testing and Analysis: Theory and Practice. EUA: Elsevier Butterworth-heinemann, 2005.

MATHER, Angus. **Offshore Engineering: an Introduction**. 2. ed. London: Witherby & Co Ltd, 2000.

MEDINA, J. A. H. **Avaliação de Previsões de Fratura Elastoplástica**. Tese (Doutorado em Engenharia Mecânica) - Programa de Pós-graduação em Engenharia Mecânica da PUC-Rio, Rio de Janeiro.

MENDONÇA, Érica Martinho. Análise de Concentração de Tensões e Fadiga em uma Junta Soldada. Projeto de Trabalho de Conclusão de Curso (Graduação) – Faculdade de Engenharia Civil, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2016.

MORAWSKI, Alexandre Persuhn. Estimação da Vida de Fadiga de Tubulações de Transporte de Petróleo Sujeitas a Carregamento Estocásticos. Universidade Federal do Espírito Santo. Centro Tecnológico Departamento de Engenharia Mecânica. Vitória, 2013.

OLIVEIRA, Luiz Gustavo Leite. Análise de Vibração de Sistemas de Tubulações em Navio Petroleiros. Universidade Federal do Rio de Janeiro. Escola Politécnica. Rio de Janeiro, 2015.

PENG, Liang-Chuan. Pipe Stress Engineering. Peng Engineering, Houston, Texas, USA.

PESSARD, E.; MOREL F.; MOREL, A. **The anisotropic fatigue behavior of forged steel**. Advanced Engineering Materials, Wiley-VCH Verlag, 2009, p.732-735.

PICCININI, Flávio Costa. A Onda de Projeto por Meio da Análise Estatística de Extremos a Partir de Dados Medidos por Satélite. Macaé, Rio de Janeiro, 2008.

PIPING, Process. ASME Code for Pressure Piping, B31. ASME B31.3-2012 (Revision of ASME B31.3-2010). An American National Standard. *The American Society of Mechanical Engineers. New York*, 2013.

PIPING, Process. ASME Code for Pressure Piping, B31. ASME B31.8-2012 (Revision of ASME B31.8-2010). An American National Standard. The American Society of Mechanical Engineers. New York, 2013.

ROEHL, D.; GONÇALVES, P. B.; FRANZ, A. S. Verificação à Fadiga por Análise Estática e Dinâmica de Uma Estrutura Offshore. In: XXXVII Iberian Latin American Congress On Computational Methods in Engeneering. Brasília, Distrito Federal, 2016.

ROYLANCE, David. **Fatigue**. Department of Materials Science and Engineering. Massachusetts Institute of Technology, p. 1-9, Massachusetts, 2001.

SANDARUWAN, D. et al. A Six Degrees of Freedom Ship Simulation System for Maritime Education. *The International Journal on Advances in ICT for Emerging Regions*, p. 34-47, 2010.

SCIENCE DIRECT. Mean StressEffect. Related terms. S/d.

SILVA TELLES, Pedro C. S. **Tubulações Industriais – Cálculo**. 9. ed. Rio de Janeiro: LTC, 2006.

SHIGLEY, Joseph Edward. Mechanical Engeneering Design. 8. ed. McGraw-Hill Education, 2006.

SHIMAMURA, Yoshihide. FPSO/FSO: State of the art. *Journal of Marine Science and Technology*, p. 59-60, Tokyo, 2016.

THIAGO, Nathalie. Produção acadêmica. Disponível em: < http://www.deno.oceanica.ufrj.br/deno/prod\_academic/relatorios/2011/NathalieThiago/relat1/ Conteudo.htm>. Acesso em: 02 de dezembro de 2018, 23:28:30

# CAPÍTULO X

## 10.1 APÊNDICES

## 10.1.1 Caso de carregamento do projeto executado – Estudo de Caso 5.1

| CASO | COMBINAÇÃO         | TIPO | MÉTODO<br>DE<br>COMB. | DESCRIÇÃO                                                                                           |
|------|--------------------|------|-----------------------|-----------------------------------------------------------------------------------------------------|
| L1   | W                  | HGR  |                       |                                                                                                     |
| L2   | W+D7+T4+P1         | HGR  |                       | Operating Temperature for Spring selection                                                          |
| L3   | WW+HP+H            | HYD  |                       | Weight Filled of Water plus Hydrostatic<br>Press                                                    |
| L4   | WNC+H              | SUS  |                       | Weight No content                                                                                   |
| L5   | W+D1+T1+P1+H       | OPE  |                       | Operation Condition (Design Temp)                                                                   |
| L6   | W+D5+T2+P1+H       | OPE  |                       | Operation Condition (Design or Ambient<br>Temp, if required)                                        |
| L7   | W+D6+T3+P1+H       | OPE  |                       | Operation Condition (Design or Ambient<br>Temp, if required)                                        |
| L8   | W+P1+H             | SUS  |                       | For Sustained Stress                                                                                |
| L9   | U1                 | SUS  |                       | Operation Acceleration Due Wave (XY)                                                                |
| L10  | U2                 | SUS  |                       | Operation Acceleration Due Wave (YZ)                                                                |
| L11  | WIN1               | OCC  |                       | Win Pressure Along X axis                                                                           |
| L12  | WIN2               | OCC  |                       | Win Pressure Along Z axis                                                                           |
| L13  | D2                 | EXP  |                       | Structural Deflection Due to Acceleration<br>(Design Operation Condition) –<br>HOG+SAG (HOG=0,5SAG) |
| L14  | F1                 | SUS  |                       | Operation Thrust Load at Flare Tip                                                                  |
| L15  | F2                 | OCC  |                       | Loads due to Relief Valves                                                                          |
| L16  | F3                 | OCC  |                       | Loads due to Relief Valves                                                                          |
| L17  | F4                 | OCC  |                       | Loads due to Slug Force 1                                                                           |
| L18  | F5                 | OCC  |                       | Loads due to Slug Force 2                                                                           |
| L19  | F6                 | OCC  |                       | Loads due to Slug Force 3                                                                           |
| L20  | F7                 | OCC  |                       | Loads due to Slug Force 4                                                                           |
| L21  | F8                 | OCC  |                       | Loads due to Slug Force 5                                                                           |
| L22  | F9                 | OCC  |                       | Loads due to Slug Force 6                                                                           |
| L23  | W+D1+D2+T1+P1+H+U1 | OPE  | Algebraic             | For Flange Leakage Checking                                                                         |
| L24  | W+D1+D2+T1+P1+H+U2 | OPE  | Algebraic             | For Flange Leakage Checking                                                                         |
| L25  | L5-L8              | EXP  | Algebraic             | For Thermal Stress Checking (Thermal Expansion plus Nozzle Displacement)                            |
| L26  | L6-L8              | EXP  | Algebraic             | For Thermal Stress Checking (Thermal Expansion plus Nozzle Displacement)                            |
| L27  | L7-L8              | EXP  | Algebraic             | For Thermal Stress Checking (Thermal Expansion plus Nozzle Displacement)                            |
| L28  | L13+L25            | EXP  | SRSS                  | Square Root Combination - Displacement<br>Due Thermal Expansion and Structural<br>Displacement (D2) |
| L29  | L13+L26            | EXP  | SRSS                  | Square Root Combination - Displacement<br>Due Thermal Expansion and Structural<br>Displacement (D2) |

| CASO | COMBINAÇÃO | TIPO | MÉTODO<br>DE<br>COMB. | DESCRIÇÃO                                                                                           |
|------|------------|------|-----------------------|-----------------------------------------------------------------------------------------------------|
| L30  | L13+L27    | EXP  | SRSS                  | Square Root Combination - Displacement<br>Due Thermal Expansion and Structural<br>Displacement (D2) |
| L31  | L8+L11     | OCC  | Scalar                | For Occasional Stress and Occasional<br>Loads (sustained Weight - Win Load<br>Along X axis)         |
| L32  | L8-L11     | OCC  | Scalar                | For Occasional Stress and Occasional<br>Loads (sustained Weight - Win Load<br>Along X axis)         |
| L33  | L8+L12     | OCC  | Scalar                | For Occasional Stress and Occasional<br>Loads (sustained Weight - Win Load<br>Along Z axis)         |
| L34  | L8-L12     | OCC  | Scalar                | For Occasional Stress and Occasional<br>Loads (sustained Weight - Win Load<br>Along Z axis)         |
| L35  | L8+L9      | SUS  | Algebraic             | ForSustainedStressandOperationAccelerationDueWave (YZ)                                              |
| L36  | L8-L9      | SUS  | Algebraic             | For Sustained Stress and Operation<br>Acceleration Due Wave (YZ)                                    |
| L37  | L8+L10     | SUS  | Algebraic             | For Sustained Stress and Operation<br>Acceleration Due Wave (XY)                                    |
| L38  | L8-L10     | SUS  | Algebraic             | For Sustained Stress and Operation<br>Acceleration Due Wave (XY)                                    |
| L39  | L8+L9+L11  | OCC  | Scalar                | For Occasional Stress, Operation<br>Acceleration Due Wave and Win Pres.<br>Along X axis             |
| L40  | L8-L9+L11  | OCC  | Scalar                | For Occasional Stress, Operation<br>Acceleration Due Wave and Win Pres.<br>Along X axis             |
| L41  | L8+L9-L11  | OCC  | Scalar                | For Occasional Stress, Operation<br>Acceleration Due Wave and Win Pres.<br>Along X axis             |
| L42  | L8-L9-L11  | OCC  | Scalar                | For Occasional Stress, Operation<br>Acceleration Due Wave and Win Pres.<br>Along X axis             |
| L43  | L8+L9+L12  | OCC  | Scalar                | For Occasional Stress, Operation<br>Acceleration Due Wave and Win Pres.<br>Along Z axis             |
| L44  | L8-L9+L12  | OCC  | Scalar                | For Occasional Stress, Operation<br>Acceleration Due Wave and Win Pres.<br>Along Z axis             |
| L45  | L8+L9-L12  | OCC  | Scalar                | For Occasional Stress, Operation<br>Acceleration Due Wave and Win Pres.<br>Along Z axis             |
| L46  | L8-L9-L12  | OCC  | Scalar                | For Occasional Stress, Operation<br>Acceleration Due Wave and Win Pres.<br>Along Z axis             |
| L47  | L8+L10+L11 | OCC  | Scalar                | For Occasional Stress, Operation<br>Acceleration Due Wave and Win Pres.<br>Along X axis             |
| L48  | L8-L10+L11 | OCC  | Scalar                | For Occasional Stress, Operation<br>Acceleration Due Wave and Win Pres.<br>Along X axis             |

| CASO | COMBINAÇÃO    | TIPO | MÉTODO<br>DE<br>COMB. | DESCRIÇÃO                                                                               |
|------|---------------|------|-----------------------|-----------------------------------------------------------------------------------------|
| T 40 | I 8+I 10-I 11 | 000  | Scalar                | For Occasional Stress, Operation                                                        |
| 1.49 |               | occ  | Scalai                | Along X axis                                                                            |
| L50  | L8-L10-L11    | OCC  | Scalar                | For Occasional Stress, Operation<br>Acceleration Due Wave and Win Pres.                 |
| L51  | L8+L10+L12    | OCC  | Scalar                | For Occasional Stress, Operation<br>Acceleration Due Wave and Win Pres.<br>Along Z axis |
| L52  | L8-L10+L12    | OCC  | Scalar                | For Occasional Stress, Operation<br>Acceleration Due Wave and Win Pres.<br>Along Z axis |
| L53  | L8+L10-L12    | OCC  | Scalar                | For Occasional Stress, Operation<br>Acceleration Due Wave and Win Pres.<br>Along Z axis |
| L54  | L8-L10-L12    | OCC  | Scalar                | For Occasional Stress, Operation<br>Acceleration Due Wave and Win Pres.<br>Along Z axis |
| L55  | L8+L14        | SUS  | Scalar                | For Sustained Stress and Operation Thrust<br>Load at Flare Tip                          |
| L56  | L8+L15        | OCC  | Scalar                | For Occasional Stress, PSV2                                                             |
| L62  | L8+L16        | OCC  | Scalar                | For Occasional Stress, PSV2                                                             |
| L58  | L8+L17        | OCC  | Scalar                | For Occasional Stress, SLUG FORCE 1                                                     |
| L59  | L8+L18        | OCC  | Scalar                | For Occasional Stress, SLUG FORCE 2                                                     |
| L60  | L8+L19        | OCC  | Scalar                | For Occasional Stress, SLUG FORCE 3                                                     |
| L61  | L8+L20        | OCC  | Scalar                | For Occasional Stress, SLUG FORCE 4                                                     |
| L62  | L8+L21        | OCC  | Scalar                | For Occasional Stress, SLUG FORCE 5                                                     |
| L62  | L8+L22        | OCC  | Scalar                | For Occasional Stress, SLUG FORCE 6                                                     |
| L64  | L5,L6,L7      | OPE  | SignMax               | SignMax OPE                                                                             |
| L65  | L5,L6,L7      | OPE  | Signmin               | SignMin OPE                                                                             |
| L66  | L64+L11       | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Win Load Along X axis)                     |
| L67  | L64-L11       | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Win Load Along X axis)                     |
| L68  | L64+L12       | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Win Load Along Z axis)                     |
| L69  | L64-L12       | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Win Load Along Z axis)                     |
| L70  | L64+L9        | OPE  | Algebraic             | Operation Condition and Operation<br>Acceleration Due Wave                              |
| L71  | L64-L9        | OPE  | Algebraic             | Operation Condition and Operation<br>Acceleration Due Wave                              |
| L72  | L64+L10       | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Maximum Acceleration Due Wave)             |
| L73  | L64-L10       | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Maximum Acceleration Due Wave)             |
| L74  | L65+L11       | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Win Load Along X axis)                     |

| CASO | COMBINAÇÃO  | TIPO | MÉTODO<br>DE<br>COMB. | DESCRIÇÃO                                                                                                                                                    |
|------|-------------|------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L75  | L65-L11     | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Win Load Along X axis)                                                                                          |
| L76  | L65+L12     | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Win Load Along Z axis)                                                                                          |
| L77  | L65-L12     | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Win Load Along Z axis)                                                                                          |
| L78  | L65+L9      | OPE  | Algebraic             | Operation Condition and Operation<br>Acceleration Due Wave (YZ)                                                                                              |
| L79  | L65-L9      | OPE  | Algebraic             | Operation Condition and Operation<br>Acceleration Due Wave (YZ)                                                                                              |
| L80  | L65+L10     | OPE  | Algebraic             | Operation Condition and Operation<br>Acceleration Due Wave (XY)                                                                                              |
| L81  | L65-L10     | OPE  | Algebraic             | Operation Condition and Operation<br>Acceleration Due Wave (XY)                                                                                              |
| L82  | L64+L9+L11  | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong X axisVinVinVin                                                                                  |
| L83  | L64-L9+L11  | OPE  | Algebraic             | Operation Condition, Operation<br>Acceleration Due Wave and Win Pres.<br>Along X axis                                                                        |
| L84  | L64+L10-L11 | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong X axis                                                                                           |
| L85  | L64-L10-L11 | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong X axis                                                                                           |
| L86  | L64+L9+L12  | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong Z axis                                                                                           |
| L87  | L64-L9+L12  | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong Z axis                                                                                           |
| L88  | L64+L10-L12 | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong Z axis                                                                                           |
| L89  | L64-L10-L12 | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong Z axis                                                                                           |
| L90  | L64+L11+L13 | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Win<br>Load Along X axis) and Struc. Deflection<br>Due to<br>Acceleration (Displacement Operation<br>Condition) |
| L91  | L64-L11+L13 | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Win<br>Load Along X axis) and Struc. Deflection<br>Due to<br>Acceleration (Displacement Operation<br>Condition) |

| CASO | COMBINAÇÃO  | TIPO | MÉTODO<br>DE<br>COMB. | DESCRIÇÃO                                                                                                                                                             |
|------|-------------|------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L92  | L64+L12+L13 | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Win<br>Load Along Z axis) and Struc. Deflection<br>Due to<br>Acceleration (Displacement Operation<br>Condition)          |
| L93  | L64-L12+L13 | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Win<br>Load Along Z axis) and Struc. Deflection<br>Due to<br>Acceleration (Displacement Operation<br>Condition)          |
| L94  | L64+L9+L13  | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Operation Acceleration along YZ axis)<br>and Struc. Deflection Due to Acceleration<br>(Displacement Operation Condition) |
| L95  | L64-L9+L13  | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Operation Acceleration along YZ axis)<br>and Struc. Deflection Due to Acceleration<br>(Displacement Operation Condition) |
| L96  | L64+L10+L13 | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Operation Acceleration along XY axis)<br>and Struc. Deflection Due to Acceleration<br>(Displacement Operation Condition) |
| L97  | L64-L10+L13 | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Operating Acceleration along XY axis)<br>and Struc. Deflection Due to Acceleration<br>(Displacement Operation Condition) |
| L98  | L64+L9-L13  | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Operation Acceleration along YZ axis)<br>and Struc. Deflection Due to Acceleration<br>(Displacement Operation Condition) |
| L99  | L64-L9-L13  | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Operation Acceleration along YZ axis)<br>and Struc. Deflection Due to Acceleration<br>(Displacement Operation Condition) |
| L100 | L64+L10-L13 | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Operation Acceleration along XY axis)<br>and Struc. Deflection Due to Acceleration<br>(Displacement Operation Condition) |
| L101 | L64-L10-L13 | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Operation Acceleration along XY axis)<br>and Struc. Deflection Due to Acceleration<br>(Displacement Operation Condition) |
| L102 | L65+L9+L11  | OPE  | Algebraic             | Operation Condition, Operation<br>Acceleration Due Wave and Win Pres.<br>Along X axis                                                                                 |
| L103 | L65-L9+L11  | OPE  | Algebraic             | Operation Condition, Operation<br>Acceleration Due Wave and Win Pres.<br>Along X axis                                                                                 |
| L104 | L65+L10-L11 | OPE  | Algebraic             | Operation Condition, Operation<br>Acceleration Due Wave and Win Pres.<br>Along X axis                                                                                 |

| CASO | COMBINAÇÃO  | TIPO | MÉTODO<br>DE<br>COMB. | DESCRIÇÃO                                                                                                                                                             |
|------|-------------|------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L105 | L65-L10-L11 | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong X axis                                                                                                    |
| L106 | L65+L9+L12  | OPE  | Algebraic             | Operation Condition, Operation<br>Acceleration Due Wave and Win Pres.<br>Along Z axis                                                                                 |
| L107 | L65-L9+L12  | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong Z axis                                                                                                    |
| L108 | L65+L10-L12 | OPE  | Algebraic             | Operation Condition, Operation<br>Acceleration Due Wave and Win Pres.<br>Along Z axis                                                                                 |
| L109 | L65-L10-L12 | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong Z axis                                                                                                    |
| L110 | L65+L11+L13 | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Win Load Along X axis) and Struc.<br>Deflection Due to Acceleration<br>(Displacement Operation Condition)                |
| L111 | L65-L11+L13 | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Win Load Along X axis) and Struc.<br>Deflection Due to Acceleration<br>(Displacement Operation Condition)                |
| L112 | L65+L12+L13 | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Win Load Along Z axis) and Struc.<br>Deflection Due to Acceleration<br>(Displacement Operation Condition)                |
| L113 | L65-L12+L13 | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Win Load Along Z axis) and Struc.<br>Deflection Due to Acceleration<br>(Displacement Operation Condition)                |
| L114 | L65+L9+L13  | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Operation Acceleration along YZ axis)<br>and Struc. Deflection Due to Acceleration<br>(Displacement Operation Condition) |
| L115 | L65-L9+L13  | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Operation Acceleration along YZ axis)<br>and Struc. Deflection Due to Acceleration<br>(Displacement Operation Condition) |
| L116 | L65+L10+L13 | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Operation Acceleration along XY axis)<br>and Struc. Deflection Due to Acceleration<br>(Displacement Operation Condition) |
| L117 | L65-L10+L13 | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Operation Acceleration along XY axis)<br>and Struc. Deflection Due to Acceleration<br>(Displacement Operation Condition) |
| L118 | L65+L9-L13  | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Operation Acceleration along YZ axis)<br>and Struc. Deflection Due to Acceleration<br>(Displacement Operation Condition) |
| L119 | L65-L9-L13  | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Operation Acceleration along YZ axis)                                                                                    |

| CASO | COMBINAÇÃO      | TIPO | MÉTODO<br>DE<br>COMB. | DESCRIÇÃO                                                                                                                                                             |
|------|-----------------|------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                 |      |                       | and Struc. Deflection Due to Acceleration<br>(Displacement Operation Condition)                                                                                       |
| L120 | L65+L10-L13     | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Operation Acceleration along XY axis)<br>and Struc. Deflection Due to Acceleration<br>(Displacement Operation Condition) |
| L121 | L65-L10-L13     | OPE  | Algebraic             | Operation Condition and Occasional Loads<br>(Operation Acceleration along XY axis)<br>and Struc. Deflection Due to Acceleration<br>(Displacement Operation Condition) |
| L122 | L64+L9+L11+L13  | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWin Pres.Along X axis and Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)                       |
| L123 | L64-L9+L11+L13  | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong X axisand Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)                              |
| L124 | L64+L9-L11+L13  | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong X axisand Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)                              |
| L125 | L64-L9-L11+L13  | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong X axis and Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)                             |
| L126 | L64+L10+L11+L13 | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong X axisand Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)                              |
| L127 | L64-L10+L11+L13 | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong X axisand Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)                              |
| L128 | L64+L10-L11+L13 | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong X axis and Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)                             |
| L129 | L64-L10-L11+L13 | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong X axis and Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)                             |
| L130 | L64+L9+L12+L13  | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong Z axisand Struc.DeflectionDue to                                                                          |

| CASO | COMBINAÇÃO      | TIPO | MÉTODO<br>DE<br>COMB. | DESCRIÇÃO                                                                                                                                                                |
|------|-----------------|------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                 |      |                       | Acceleration (Displacement<br>OperationCondition)                                                                                                                        |
| L131 | L64-L9+L12+L13  | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong Z axis and Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)OperationOperation              |
| L132 | L64+L9-L12+L13  | OPE  | Algebraic             | Operation Condition, Operation<br>Acceleration Due Wave and Win Pres.<br>Along Z axis and Struc. Deflection Due to<br>Acceleration (Displacement Operation<br>Condition) |
| L133 | L64-L9-L12+L13  | OPE  | Algebraic             | Operation Condition, Operation<br>Acceleration Due Wave and Win Pres.<br>Along Z axis and Struc. Deflection Due to<br>Acceleration (Displacement Operation<br>Condition) |
| L134 | L64+L10+L12+L13 | OPE  | Algebraic             | Operation Condition, Operation<br>Acceleration Due Wave and Win Pres.<br>Along Z axis and Struc. Deflection Due to<br>Acceleration (Displacement v Condition)            |
| L135 | L64-L10+L12+L13 | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong Z axisand Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)                                 |
| L136 | L64+L10-L12+L13 | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWin Pres.Along Z axis and Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)                          |
| L137 | L64-L10-L12+L13 | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWin Pres.Along Z axis and Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)                          |
| L138 | L65+L9+L11+L13  | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong X axis and Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)OperationOperation              |
| L139 | L65-L9+L11+L13  | OPE  | Algebraic             | OperationCondition,OperationAccelerationDue Wave and Win Pres.Along X axis and Struc.Deflection Due toAcceleration(Displacement OperationCondition)                      |
| L140 | L65+L9-L11+L13  | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong X axis and Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)                                |

| CASO | COMBINAÇÃO      | TIPO | MÉTODO<br>DE<br>COMB. | DESCRIÇÃO                                                                                                                                                   |
|------|-----------------|------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L141 | L65-L9-L11+L13  | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWin Pres.Along X axis and Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)             |
| L142 | L65+L10+L11+L13 | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong X axis and Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)OperationOperation |
| L143 | L65-L10+L11+L13 | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong X axis and Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)OperationOperation |
| L144 | L65+L10-L11+L13 | OPE  | Algebraic             | OperationCondition,OperationAccelerationDue Wave and Win Pres.Along X axis and Struc. Deflection Due toAcceleration(Displacement OperationCondition)        |
| L145 | L65-L10-L11+L13 | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong X axis and Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)                   |
| L146 | L65+L9+L12+L13  | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong Z axisand Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)                    |
| L147 | L65-L9+L12+L13  | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong Z axisand Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)                    |
| L148 | L65+L9-L12+L13  | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong Z axisand Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)                    |
| L149 | L65-L9-L12+L13  | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong Z axisand Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)                    |
| L150 | L65+L10+L12+L13 | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong Z axisand Struc.DeflectionDue toAcceleration(DisplacementOperationCondition)                    |
| L151 | L65-L10+L12+L13 | OPE  | Algebraic             | Operation Condition, Operation<br>Acceleration Due Wave and Win Pres.<br>Along Z axis and Struc. Deflection Due to                                          |

| CASO | COMBINAÇÃO                                                                                                                                    | TIPO | MÉTODO<br>DE<br>COMB. | DESCRIÇÃO                                                                                                                                |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                               |      |                       | Acceleration (Displacement Operation<br>Condition)                                                                                       |
| L152 | L65+L10-L12+L13                                                                                                                               | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong Z axisand Struc.DeflectionDue toAcceleration(DisplacementOperationCondition) |
| L153 | L65-L10-L12+L13                                                                                                                               | OPE  | Algebraic             | OperationCondition,OperationAccelerationDueWave andWinAlong Z axisand Struc.DeflectionDue toAcceleration(DisplacementOperationCondition) |
| L154 | L28-L29+L13                                                                                                                                   | EXP  | Algebraic             | Thermal Stress Range Checking                                                                                                            |
| L155 | L3                                                                                                                                            | HYD  |                       | Hydro Stress                                                                                                                             |
| L156 | L8,L35,L36,L37,L38                                                                                                                            | SUS  | MAX                   | Max Sustained Stress                                                                                                                     |
| L157 | L25,L26,L27,L28,L29,L30,L1<br>54                                                                                                              | EXP  | MAX                   | Max Expansion Stress (Thermal Stress<br>Range)                                                                                           |
| L158 | L31,L32,L33,L34,L35,L40,L4<br>1,L42,L43,L44,<br>L45,L46,L47,L48,L49,L50,L5<br>1,L52,L53,L54, L55, L56,<br>L62,L58,L59,L60,L61,L62,L6<br>2     | OCC  | MAX                   | Max Occ Stress                                                                                                                           |
| L159 | L4,L8,L64,L65,L66,L67,L68,<br>L69,L70,L71,L72<br>L73,L74,L75,L76,L77,L78,L7<br>9,L80,L81,L82,<br>L83,L84,L85,L86                              | OPE  | MAX                   |                                                                                                                                          |
| L160 | L87,L88,L89,L90,L91,L92,L9<br>3,L94,L95,L96,<br>L97,L98,L99,L100,L101,L102<br>,L103,L104,<br>L105,L106,L107,L108,L109,L<br>110,L111,L112,L113 | OPE  | MAX                   |                                                                                                                                          |
| L161 | L114,L115,L116,L117,L118,L<br>119,L120,L121,L122,L123,L1<br>24,L125,L126,L127,L128,L12<br>9,L130,L131,L132,L133,L134<br>,L135,L136,L137,L138  | OPE  | MAX                   |                                                                                                                                          |
| L162 | L139,L140,L141,L142,L143,L<br>144,L145,L146, L147,<br>L148,L149,L150,L151,L152,L<br>153                                                       | OPE  | MAX                   |                                                                                                                                          |
| L163 | L158,L159,L160,L161,L162                                                                                                                      | OPE  | MAX                   | Nozzle Loads , Support Load (OPE)                                                                                                        |
| L164 | L14,L15,L16,L17,L18,L19,L2<br>0,L21,L22                                                                                                       | OCC  | MAX                   | Support Load (OCC - PSV, Slug)                                                                                                           |
| L165 | L25,L26,L27,L154                                                                                                                              | EXP  | MAX                   |                                                                                                                                          |

| CASO          | COMBINAÇÃO                 | TIPO       | MÉTODO<br>DE<br>COMB. | DESCRIÇÃO                              |
|---------------|----------------------------|------------|-----------------------|----------------------------------------|
| L166          | L16,L17,L18,L19,L20,L21,L2 | OCC        | MAX                   |                                        |
| L167          | 2 0 531 13                 | FXP        |                       | Adi Hogg - Sagg y $0.41$               |
| L167          | 0.0771.167                 | FXP        |                       | Adj $MH_s = 0.75m$                     |
| L160          | 0.1791.167                 | EXP        |                       | Adj MHs = $1.75m$                      |
| L170          | 0.282L167                  | EXP        |                       | Adj MHs = $2.75$ m                     |
| L171          | 0.385L167                  | EXP        |                       | Adj MHs = $3.75$ m                     |
| L172          | 0.487L167                  | EXP        |                       | Adj MHs = $4,75$ m                     |
| L173          | 0.59L167                   | EXP        |                       | Adj MHs = 5,75m                        |
| L174          | L5                         | FAT        | 7000                  |                                        |
| L175          | L165                       | FAT        | 7000                  | TERMICA                                |
| L176          | L168+L9                    | FAT        | 255867                |                                        |
| L177          | L168-L9                    | FAT        | 255867                |                                        |
| L178          | -L168+L9                   | FAT        | 255867                |                                        |
| L179          | -L168-L9                   | FAT        | 255867                | FADIGA – ACELERAÇÃO +                  |
| L180          | L168+L10                   | FAT        | 255867                | DESLOCAMENTOS                          |
| L181          | L168-L10                   | FAT        | 255867                |                                        |
| L182          | -L168+L10                  | FAT        | 255867                |                                        |
| L183          | -L168-L10                  | FAT        | 255867                |                                        |
| L184          | L169+L9                    | FAT        | 5983058               |                                        |
| L185          | L169-L9                    | FAT        | 5983058               | -                                      |
| L186          | -L169+L9                   | FAT        | 5983058               |                                        |
| L187          | -L169-L9                   | FAT        | 5983058               | FADIGA – ACELERAÇÃO +                  |
| L188          | L169+L10                   | FAT        | 5983058               | DESLOCAMENTOS                          |
| L189          | L169-L10                   | FAT        | 5983058               |                                        |
| L190          | -L169+L10                  | FAT        | 5983058               |                                        |
| L191          | -L169-L10                  | FAT        | 5983058               |                                        |
| L192          | L170+L9                    | FAI        | 4276398               | -                                      |
| L193<br>I 104 | L170-L9                    | FAI<br>EAT | 42/0398               |                                        |
| L194<br>I 105 | -L170+L9                   |            | 4270398               |                                        |
| L195<br>I 106 | 1170+110                   | FAT        | 4270398               | PADIGA – ACELERAÇÃO +<br>DESLOCAMENTOS |
| L197          | L 170-L 10                 | FAT        | 4276398               |                                        |
| L198          | -L170-L10                  | FAT        | 4276398               |                                        |
| L199          | -L170-L10                  | FAT        | 4276398               | -                                      |
| L200          | L171+L9                    | FAT        | 843343                |                                        |
| L201          | L171-L9                    | FAT        | 843343                |                                        |
| L202          | -L171+L9                   | FAT        | 843343                |                                        |
| L203          | -L171-L9                   | FAT        | 843343                | FADIGA – ACELERACÃO +                  |
| L204          | L171+L10                   | FAT        | 843343                | DESLOCAMENTOS                          |
| L205          | L171-L10                   | FAT        | 843343                |                                        |
| L206          | -L171+L10                  | FAT        | 843343                |                                        |
| L207          | -L171-L10                  | FAT        | 843343                |                                        |
| L208          | L172+L9                    | FAT        | 139893                | FADIGA – ACELERAÇÃO +                  |
| L209          | L172-L9                    | FAT        | 139893                | DESLOCAMENTOS                          |

| CASO | COMBINAÇÃO | TIPO | MÉTODO<br>DE<br>COMB. | DESCRIÇÃO             |
|------|------------|------|-----------------------|-----------------------|
| L210 | -L172+L9   | FAT  | 139893                |                       |
| L211 | -L172-L9   | FAT  | 139893                |                       |
| L212 | L172+L10   | FAT  | 139893                |                       |
| L213 | L172-L10   | FAT  | 139893                |                       |
| L214 | -L172+L10  | FAT  | 139893                |                       |
| L215 | -L172-L10  | FAT  | 139893                |                       |
| L216 | L173+L9    | FAT  | 39126                 |                       |
| L217 | L173-L9    | FAT  | 39126                 |                       |
| L218 | -L173+L9   | FAT  | 39126                 |                       |
| L219 | -L173-L9   | FAT  | 39126                 | FADIGA – ACELERAÇÃO + |
| L220 | L173+L10   | FAT  | 39126                 | DESLOCAMENTOS         |
| L221 | L173-L10   | FAT  | 39126                 |                       |
| L222 | -L173+L10  | FAT  | 39126                 |                       |
| L223 | -L173-L10  | FAT  | 39126                 |                       |
| L224 | L167+L9    | FAT  | 18665                 |                       |
| L225 | L167-L9    | FAT  | 18665                 |                       |
| L226 | -L167+L9   | FAT  | 18665                 |                       |
| L227 | -L167-L9   | FAT  | 18665                 | FADIGA – ACELERAÇÃO + |
| L228 | L167+L10   | FAT  | 18665                 | DESLOCAMENTOS         |
| L229 | L167-L10   | FAT  | 18665                 |                       |
| L230 | -L167+L10  | FAT  | 18665                 |                       |
| L231 | -L167-L10  | FAT  | 18665                 |                       |

## 10.1.2 Caso de carregamento do projeto executado – Estudo de Caso 5.2

| CASO | COMBINAÇÃO                                | TIPO | Nº CICLOS | DESCRIÇÃO |
|------|-------------------------------------------|------|-----------|-----------|
| L1   | 1 WW+HP+H                                 |      | -         | -         |
| L2   | L2 W+D1+T1+P1+H                           |      | -         | -         |
| L3   | L3 W+D1+T1+P1+H+0.4U1+0.27U2+0.12U3       |      | -         | -         |
| L4   | <b>4</b> W+D1+T1+P1+H+0.4U1+0.27U2-0.12U3 |      | -         | -         |
| L5   | W+D1+T1+P1+H+0.4U1-0.27U2+0.12U3          | OPE  | -         | -         |
| L6   | L6 W+D1+T1+P1+H+0.4U1-0.27U2-0.12U3       |      | -         | -         |
| L7   | W+D1+T1+P1+H-0.4U1+0.27U2+0.12U3          | OPE  | -         | -         |
| L8   | W+D1+T1+P1+H-0.4U1+0.27U2-0.12U3          | OPE  | -         | -         |
| L9   | L9 W+D1+T1+P1+H-0.4U1-0.27U2+0.12U3       |      | -         | -         |
| L10  | L10 W+D1+T1+P1+H-0.4U1-0.27U2-0.12U3      |      | -         | -         |
| L11  | W+D1+T1+P1+H+WIN1                         | OPE  | -         | -         |
| L12  | W+D1+T1+P1+H+WIN2                         | OPE  | -         | -         |
| L13  | W+D1+D2+T1+P1+H                           | OPE  | -         | -         |
| L14  | W+D1+D3+T1+P1+H                           | OPE  | -         | -         |
| L15  | W+D1+T1+P1+H+0.19U1+0.18U2+0.02U3         | OPE  | -         | -         |
| L16  | W+D1+T1+P1+H+0.19U1+0.18U2-0.02U3         | OPE  | -         | -         |
| L17  | W+D1+T1+P1+H+0.19U1-0.18U2+0.02U3         | OPE  | -         | -         |
| L18  | W+D1+T1+P1+H+0.19U1-0.18U2-0.02U3         | OPE  | -         | -         |

| L19        | W+D1+T1+P1+H-0.19U1+0.18U2+0.02U3 | OPE | - | _ |
|------------|-----------------------------------|-----|---|---|
| L20        | W+D1+T1+P1+H-0.19U1+0.18U2-0.02U3 | OPE | _ | _ |
| L21        | W+D1+T1+P1+H-0.19U1-0.18U2+0.02U3 | OPE | _ | _ |
| L22        | W+D1+T1+P1+H-0.19U1-0.18U2-0.02U3 | OPE |   | _ |
| L23        | W+D1+D4+T1+P1+H                   | OPE | _ | _ |
| L24        | W+D1+D5+T1+P1+H                   | OPE | _ | _ |
| L25        | W+P1+H                            | SUS |   | _ |
| L26        | L2-L25                            | EXP |   | _ |
| L27        | L13-L25                           | EXP |   |   |
| L28        | L14-L25                           | EXP |   |   |
| L29        | L11-L2                            | OCC |   |   |
| L30        | L12-L2                            | OCC |   |   |
| L31        | L13-L2                            | EXP |   |   |
| L32        | L14-L2                            | EXP |   |   |
| L33        | L3+L31                            | OPE |   |   |
| L34        | L4+L31                            | OPE |   |   |
| L35        | 1.5+L31                           | OPE |   |   |
| L36        | L6+L31                            | OPE |   |   |
| L37        | L7+L31                            | OPE |   |   |
| L38        | L8+L31                            | OPE |   |   |
| L30<br>L39 | L9+L31                            | OPE |   |   |
| I.40       | L10+L31                           | OPE |   |   |
| I.41       | 13+132                            | OPE |   |   |
| L42        | I 4+L 32                          | OPE |   |   |
| I.43       | 1.5+L32                           | OPE |   |   |
| L44        | L6+L32                            | OPE |   | _ |
| L45        | L7+L32                            | OPE | _ | _ |
| L46        | L8+L32                            | OPE |   | _ |
| L47        | L9+L32                            | OPE | _ | _ |
| L48        | L10+L32                           | OPE |   | _ |
| L49        | L3-L2                             | SUS |   | _ |
| L50        | L4-L2                             | SUS | _ | _ |
| L51        | L5-L2                             | SUS | _ | _ |
| L52        | L6-L2                             | SUS |   | _ |
| L53        | L7-L2                             | SUS | _ | _ |
| L54        | L8-L2                             | SUS | _ | _ |
| L55        | L9-L2                             | SUS | _ | _ |
| L56        | L10-L2                            | SUS | _ | _ |
| L62        | L15-L2                            | SUS | - | - |
| L58        | L16-L2                            | SUS | - | _ |
| L59        | L17-L2                            | SUS | - | _ |
| L60        | L18-L2                            | SUS | - | _ |
| L61        | L19-L2                            | SUS | - | - |
| L62        | L20-L2                            | SUS | - | - |
| L62        | L21-L2                            | SUS | - | - |
| L64        | L22-L2                            | SUS | - | - |
| L65        | L25+L49                           | SUS | - | - |
| L66        | L25+L50                           | SUS | - | - |

| L67  | L25+L51             | SUS | -    | -                   |
|------|---------------------|-----|------|---------------------|
| L68  | L25+L52             | SUS | -    | -                   |
| L69  | L25+L53             | SUS | -    | -                   |
| L70  | L25+L54             | SUS | -    | -                   |
| L71  | L25+L55             | SUS | -    | -                   |
| L72  | L25+L56             | SUS | -    | -                   |
| L73  | L29+L65             | OCC | _    | _                   |
| L74  | L29+L66             | OCC | _    | _                   |
| L75  | L29+L67             | OCC | _    | _                   |
| L76  | L29+L68             | OCC | _    | _                   |
| L77  | L29+L69             | OCC | _    | _                   |
| L78  | L29+L70             | OCC | _    | _                   |
| L79  | L29+L71             | OCC | _    | _                   |
| L80  | L29+L72             | OCC | _    | _                   |
| L81  | L30+L65             | OCC |      | _                   |
| L82  | L30+L66             | OCC |      | _                   |
| L83  | L30+L67             | OCC |      | _                   |
| L84  | L30+L68             | OCC |      |                     |
| L85  | L30+L69             | OCC |      |                     |
| L86  | L30+L70             | OCC |      |                     |
| L87  | L30+L71             | OCC |      | _                   |
| L88  | L30+L72             | OCC |      |                     |
| L89  | L23-L2              | EXP |      |                     |
| L90  | L24-L2              | EXP |      | _                   |
| L91  | L26                 | FAT | 7000 | TÉRMICA             |
| L92  | 0.6L31-0.6L32+L49   | FAT | 1    |                     |
| L93  | 0.6L31-0.6L32+L50   | FAT | 1    |                     |
| L94  | 0.6L31-0.6L32+L51   | FAT | 1    |                     |
| L95  | 0.6L31-0.6L32+L52   | FAT | 1    | Faixa 10 de altura  |
| L96  | 0.6L31-0.6L32+L53   | FAT | 1    | de onda - Fator 1,0 |
| L97  | 0.6L31-0.6L32+L54   | FAT | 1    | - DEC               |
| L98  | 0.6L31-0.6L32+L55   | FAT | 1    |                     |
| L99  | 0.6L31-0.6L32+L56   | FAT | 1    |                     |
| L100 | 0.48L31-0.48L32+L49 | FAT | 909  |                     |
| L101 | 0.48L31-0.48L32+L50 | FAT | 909  |                     |
| L102 | 0.48L31-0.48L32+L51 | FAT | 909  |                     |
| L103 | 0.48L31-0.48L32+L52 | FAT | 909  | Faixa 9 de altura   |
| L104 | 0.48L31-0.48L32+L53 | FAT | 909  | de onda - Fator 0,8 |
| L105 | 0.48L31-0.48L32+L54 | FAT | 909  | - DEC               |
| L106 | 0.48L31-0.48L32+L55 | FAT | 909  |                     |
| L107 | 0.48L31-0.48L32+L56 | FAT | 909  |                     |
| L108 | 0.36L31-0.36L32+L49 | FAT | 2878 |                     |
| L109 | 0.36L31-0.36L32+L50 | FAT | 2878 |                     |
| L110 | 0.36L31-0.36L32+L51 | FAT | 2878 | Faixa 8 de altura   |
| L111 | 0.36L31-0.36L32+L52 | FAT | 2878 | de onda - Fator 0.6 |
| L112 | 0.36L31-0.36L32+L53 | FAT | 2878 | - DEC               |
| L113 | 0.36L31-0.36L32+L54 | FAT | 2878 |                     |
| L114 | 0.36L31-0.36L32+L55 | FAT | 2878 |                     |
| 1    |                     |     |      |                     |

| L115 | 0.36L31-0.36L32+L56                   | FAT | 2878    |                                                   |
|------|---------------------------------------|-----|---------|---------------------------------------------------|
| L116 | 0.6L89-0.6L90+L62                     | FAT | 6056    |                                                   |
| L117 | 0.6L89-0.6L90+L58                     | FAT | 6056    | -                                                 |
| L118 | 0.6L89-0.6L90+L59                     | FAT | 6056    |                                                   |
| L119 | 0.6L89-0.6L90+L60                     | FAT | 6056    | Faixa 7 de altura                                 |
| L120 | 0.6L89-0.6L90+L61                     | FAT | 6056    | de onda - Fator 1.0<br>- DOC                      |
| L121 | 0.6L89-0.6L90+L62                     | FAT | 6056    |                                                   |
| L122 | 0.6L89-0.6L90+L62                     | FAT | 6056    | _                                                 |
| L123 | 0.6L89-0.6L90+L64                     | FAT | 6056    | _                                                 |
| L124 | 0.42L89-0.42L90+L62                   | FAT | 15900   |                                                   |
| L125 | 0.42L89-0.42L90+L58                   | FAT | 15900   | _                                                 |
| L126 | 0.42L89-0.42L90+L59                   | FAT | 15900   |                                                   |
| L127 | 0.42L89-0.42L90+L60                   | FAT | 15900   | Faixa 6 de altura                                 |
| L128 | 0.42L89-0.42L90+L61                   | FAT | 15900   | de onda - Fator 0,7                               |
| L129 | 0.42L89-0.42L90+L62                   | FAT | 15900   | - DOC                                             |
| L130 | 0.42L89-0.42L90+L62                   | FAT | 15900   |                                                   |
| L131 | 0.42L89-0.42L90+L64                   | FAT | 15900   |                                                   |
| L132 | 0.3L89-0.3L90+L62                     | FAT | 53450   |                                                   |
| L133 | 0.3L89-0.3L90+L58                     | FAT | 53450   | -                                                 |
| L134 | 0.3L89-0.3L90+L59                     | FAT | 53450   | -                                                 |
| L135 | 0.3L89-0.3L90+L60                     | FAT | 53450   | Faixa 5 de altura<br>de onda - Fator 0,5<br>- DOC |
| L136 | 0.3L89-0.3L90+L61                     | FAT | 53450   |                                                   |
| L137 | 0.3L89-0.3L90+L62                     | FAT | 53450   |                                                   |
| L138 | 0.3L89-0.3L90+L62                     | FAT | 53450   |                                                   |
| L139 | 0.3L89-0.3L90+L64                     | FAT | 53450   |                                                   |
| L140 | 0.18L89-0.18L90+L62                   | FAT | 184737  |                                                   |
| L141 | 0.18L89-0.18L90+L58                   | FAT | 184737  | -                                                 |
| L142 | 0.18L89-0.18L90+L59                   | FAT | 184737  |                                                   |
| L143 | 0.18L89-0.18L90+L60                   | FAT | 184737  | Faixa 4 de altura                                 |
| L144 | 0.18L89-0.18L90+L61                   | FAT | 184737  | de onda - Fator 0,3                               |
| L145 | 0.18L89-0.18L90+L62                   | FAT | 184737  | - DOC                                             |
| L146 | 0.18L89-0.18L90+L62                   | FAT | 184737  | -                                                 |
| L147 | 0.18L89-0.18L90+L64                   | FAT | 184737  | -                                                 |
| L148 | 0.12L89-0.12L90+L62                   | FAT | 980456  |                                                   |
| L149 | 0.12L89-0.12L90+L58                   | FAT | 980456  | -                                                 |
| L150 | 0.12L89-0.12L90+L59                   | FAT | 980456  |                                                   |
| L151 | 0.12L89-0.12L90+L60                   | FAT | 980456  | Faixa 3 de altura                                 |
| L152 | 0.12L89-0.12L90+L61                   | FAT | 980456  | de onda - Fator 0,2                               |
| L153 | 0.12L89-0.12L90+L62                   | FAT | 980456  | - DOC                                             |
| L154 | 0.12L89-0.12L90+L62                   | FAT | 980456  | -                                                 |
| L155 | 0.12L89-0.12L90+L64                   | FAT | 980456  | -                                                 |
| L156 | 0.06L89-0.06L90+L62                   | FAT | 4436056 |                                                   |
| L157 | 0.06L89-0.06L90+L58                   | FAT | 4436056 | -                                                 |
| L158 | 0.06L89-0.06L90+L59                   | FAT | 4436056 | Faixa 2 de altura                                 |
| L159 | 0.06L89-0.06L90+L60                   | FAT | 4436056 | de onda - Fator 0.1                               |
| L160 | 0.06L89-0.06L90+L61                   | FAT | 4436056 | - DOC                                             |
| L161 | 0.06L89-0.06L90+L62                   | FAT | 4436056 | -                                                 |
| L162 | 0.06L89-0.06L90+L62                   | FAT | 4436056 | -                                                 |
|      | · · · · · · · · · · · · · · · · · · · |     |         | 1                                                 |

| L163  | 0.06L89-0.06L90+L64                           | FAT | 4436056 |                   |
|-------|-----------------------------------------------|-----|---------|-------------------|
| L164  | 0.03L89-0.03L90+L62                           | FAT | 5784015 |                   |
| L165  | 0.03L89-0.03L90+L58                           | FAT | 5784015 |                   |
| L166  | 0.03L89-0.03L90+L59                           | FAT | 5784015 | Eaira 1 da altura |
| L167  | 0.03L89-0.03L90+L60                           | FAT | 5784015 | da onda Estor     |
| L168  | 0.03L89-0.03L90+L61                           | FAT | 5784015 |                   |
| L169  | 0.03L89-0.03L90+L62                           | FAT | 5784015 | 0,05 - DOC        |
| L170  | 0.03L89-0.03L90+L62                           | FAT | 5784015 |                   |
| L171  | 0.03L89-0.03L90+L64                           | FAT | 5784015 |                   |
| L172  | L65,L66,L67,L68,L69,L70,L71,L72               | SUS | -       | -                 |
| T 173 | L73,L74,L75,L76,L77,L78,L79,L80,L81,L82,L83,L | 000 |         |                   |
| L1/3  | 84,L85,L86,L87,L88                            | UCC | -       | -                 |
|       | L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12,L13,L14,L |     |         |                   |
| L174  | 33,L34,L35,L36,L37,L38,L39,L40,L41,L42,L43,L4 | OPE | -       | -                 |
|       | 4,L45,L46,L47,L48                             |     |         |                   |

## 10.1.3 Caso de carregamento do projeto executado – Estudo de Caso 5.3

|     | LOAD CASES                           | STRESS<br>TYPE | LOAD<br>CYCLES | DESCRIPTION                            |
|-----|--------------------------------------|----------------|----------------|----------------------------------------|
| L1  | WW+HP                                | HYD            |                | HYDROSTATIC TEST                       |
| L2  | W+T1+P1+D1                           | OPE            |                | DESIGN CONDITION                       |
| L3  | W+T1+P1+D1+A1.U<br>1+B1.U2+<br>C1.U3 | OPE            |                |                                        |
| L4  | W+T1+P1+D1+A1.U<br>1+B1.U2-C1.U3     | OPE            |                |                                        |
| L5  | W+T1+P1+D1+A1.U<br>1-B1.U2+C1.U3     | OPE            |                |                                        |
| L6  | W+T1+P1+D1+A1.U<br>1-B1.U2-C1.U3     | OPE            |                |                                        |
| L7  | W+T1+P1+D1-<br>A1.U1+B1.U2+C1.U3     | OPE            |                | DESIGN CONDITION +<br>COMBINATION OF   |
| L8  | W+T1+P1+D1-<br>A1.U1+B1.U2-C1.U3     | OPE            |                | ACCELERATIONS (DEC)                    |
| L9  | W+T1+P1+D1-<br>A1.U1-B1.U2+C1.U3     | OPE            |                |                                        |
| L10 | W+T1+P1+D1-<br>A1.U1-B1.U2-C1.U3     | OPE            |                |                                        |
| L11 | W+T1+P1+D1+WIN1                      | OPE            |                | DESIGN CONDITION +<br>WIN1             |
| L12 | W+T1+P1+D1+WIN2                      | OPE            |                | DESIGN CONDITION +<br>WIN2             |
| L13 | W+T1+P1+D1+D2                        | OPE            |                | DESIGN CONDITION +<br>SAGGING<br>(DEC) |
| L14 | W+T1+P1+D1+D3                        | OPE            |                | DESIGN CONDITION +<br>HOGGING<br>(DEC) |
| L15 | W+T1+P1+D1+A2.U<br>1+B2.U2+          | OPE            |                |                                        |

|     | LOAD CASES                       | STRESS<br>TYPE | LOAD<br>CYCLES | DESCRIPTION                             |
|-----|----------------------------------|----------------|----------------|-----------------------------------------|
|     | C2.U3                            |                |                |                                         |
| L16 | W+T1+P1+D1+A2.U<br>1+B2.U2-C2.U3 | OPE            |                | DESIGN CONDITION +                      |
| L17 | W+T1+P1+D1+A2.U<br>1-B2.U2+C2.U3 | OPE            |                | COMBINATION OF<br>ACCELERATIONS (DOC)   |
| L18 | W+T1+P1+D1+A2.U<br>1-B2.U2-C2.U3 | OPE            |                |                                         |
| L19 | W+T1+P1+D1-<br>A2.U1+B2.U2+C2.U3 | OPE            |                |                                         |
| L20 | W+T1+P1+D1-<br>A2.U1+B2.U2-C2.U3 | OPE            |                |                                         |
| L21 | W+T1+P1+D1-<br>A2.U1-B2.U2+C2.U3 | OPE            |                |                                         |
| L22 | W+T1+P1+D1-<br>A2.U1-B2.U2-C2.U3 | OPE            |                |                                         |
| L23 | W+T1+P1+D1+D4                    | OPE            |                | DESIGN CONDITION +<br>SAGGING<br>(DOC)  |
| L24 | W+T1+P1+D1+D5                    | OPE            |                | DESIGN CONDITION +<br>HOGGING<br>(DOC)  |
| L25 | W+P1                             | SUS            |                | SUSTAINED LOADS                         |
| L26 | L2-L25                           | EXP            |                | EXPANSION (T1+D1)                       |
| L27 | L13-L25                          | EXP            |                | EXPANSION (T1+D1+D2)                    |
| L28 | L14-L25                          | EXP            |                | EXPANSION (T1+D1+D3)                    |
| L29 | L11-L2                           | OCC            |                | WIN1                                    |
| L30 | L12-L2                           | OCC            |                | WIN2                                    |
| L31 | L13-L2                           | EXP            |                | D2 (SAGGING DEC)                        |
| L32 | L14-L2                           | EXP            |                | D3 (HOGGING DEC)                        |
| L33 | L3+L31                           | OPE            |                |                                         |
| L34 | L4+L31                           | OPE            |                |                                         |
| L35 | L5+L31                           | OPE            |                |                                         |
| L36 | L6+L31                           | OPE            |                | DESIGN CONDITION + D(2.3) + COMBINATION |
| L37 | L7+L31                           | OPE            |                | OF ACCELERATIONS                        |
| L38 | L8+L31                           | OPE            |                | (DEC)                                   |

|    | LOAD CASES                           | STRESS<br>TYPE | LOAD<br>CYCLES | DESCRIPTION        |
|----|--------------------------------------|----------------|----------------|--------------------|
| L1 | WW+HP                                | HYD            |                | HYDROSTATIC TEST   |
| L2 | W+T1+P1+D1                           | OPE            |                | DESIGN CONDITION   |
| L3 | W+T1+P1+D1+A1.U<br>1+B1.U2+<br>C1.U3 | OPE            |                | DESIGN CONDITION + |
| L4 | W+T1+P1+D1+A1.U                      | OPE            |                | COMBINATION OF     |

|     | LOAD CASES                           | STRESS<br>TYPE | LOAD<br>CYCLES | DESCRIPTION                               |
|-----|--------------------------------------|----------------|----------------|-------------------------------------------|
|     | 1+B1.U2-C1.U3                        |                |                | ACCELERATIONS (DEC)                       |
| L5  | W+T1+P1+D1+A1.U<br>1-B1.U2+C1.U3     | OPE            |                |                                           |
| L6  | W+T1+P1+D1+A1.U<br>1-B1.U2-C1.U3     | OPE            |                | -                                         |
| L7  | W+T1+P1+D1-<br>A1.U1+B1.U2+C1.U3     | OPE            |                |                                           |
| L8  | W+T1+P1+D1-<br>A1.U1+B1.U2-C1.U3     | OPE            |                |                                           |
| L9  | W+T1+P1+D1-<br>A1.U1-B1.U2+C1.U3     | OPE            |                |                                           |
| L10 | W+T1+P1+D1-<br>A1.U1-B1.U2-C1.U3     | OPE            |                |                                           |
| L11 | W+T1+P1+D1+WIN1                      | OPE            |                | DESIGN CONDITION +<br>WIN1                |
| L12 | W+T1+P1+D1+WIN2                      | OPE            |                | DESIGN CONDITION +<br>WIN2                |
| L13 | W+T1+P1+D1+D2                        | OPE            |                | DESIGN CONDITION +<br>SAGGING<br>(DEC)    |
| L14 | W+T1+P1+D1+D3                        | OPE            |                | DESIGN CONDITION +<br>HOGGING<br>(DEC)    |
| L15 | W+T1+P1+D1+A2.U<br>1+B2.U2+<br>C2.U3 | OPE            |                |                                           |
| L16 | W+T1+P1+D1+A2.U<br>1+B2.U2-C2.U3     | OPE            |                |                                           |
| L17 | W+T1+P1+D1+A2.U<br>1-B2.U2+C2.U3     | OPE            |                |                                           |
| L18 | W+T1+P1+D1+A2.U<br>1-B2.U2-C2.U3     | OPE            |                |                                           |
| L19 | W+T1+P1+D1-<br>A2.U1+B2.U2+C2.U3     | OPE            |                | DESIGN CONDITION +<br>COMBINATION OF      |
| L20 | W+T1+P1+D1-<br>A2.U1+B2.U2-C2.U3     | OPE            |                | (DOC)                                     |
| L21 | W+T1+P1+D1-<br>A2.U1-B2.U2+C2.U3     | OPE            |                |                                           |
| L22 | W+T1+P1+D1-<br>A2.U1-B2.U2-C2.U3     | OPE            |                |                                           |
| L23 | W+T1+P1+D1+D4                        | OPE            |                | DESIGN CONDITION +<br>SAGGING<br>(DOC)    |
| L24 | W+T1+P1+D1+D5                        | OPE            |                | DESIGN CONDITION<br>+<br>HOGGING<br>(DOC) |
| L25 | W+P1                                 | SUS            |                | SUSTAINED LOADS                           |
| L26 | L2-L25                               | EXP            |                | EXPANSION (T1+D1)                         |
| L27 | L13-L25                              | EXP            |                | EXPANSION (T1+D1+D2)                      |

|     | LOAD CASES | STRESS<br>TYPE | LOAD<br>CYCLES | DESCRIPTION          |
|-----|------------|----------------|----------------|----------------------|
| L28 | L14-L25    | EXP            |                | EXPANSION (T1+D1+D3) |
| L29 | L11-L2     | OCC            |                | WIN1                 |
| L30 | L12-L2     | OCC            |                | WIN2                 |
| L31 | L13-L2     | EXP            |                | D2 (SAGGING DEC)     |
| L32 | L14-L2     | EXP            |                | D3 (HOGGING DEC)     |
| L33 | L3+L31     | OPE            |                |                      |
| L34 | L4+L31     | OPE            |                |                      |
| L35 | L5+L31     | OPE            |                |                      |
| L36 | L6+L31     | OPE            |                | D(2.3) + COMBINATION |
| L37 | L7+L31     | OPE            |                | OF ACCELERATIONS     |
| L38 | L8+L31     | OPE            |                | (DEC)                |
| L39 | L9+L31     | OPE            |                |                      |
| L40 | L10+L31    | OPE            |                |                      |
| L41 | L3+L32     | OPE            |                |                      |
| L42 | L4+L32     | OPE            |                |                      |
| L43 | L5+L32     | OPE            |                |                      |
| L44 | L6+L32     | OPE            |                | _                    |
| L45 | L7+L32     | OPE            |                | _                    |
| L46 | L8+L32     | OPE            |                |                      |
| L47 | L9+L32     | OPE            |                |                      |
| L48 | L10+L32    | OPE            |                |                      |
| L49 | L3-L2      | SUS            |                |                      |
| L50 | L4-L2      | SUS            |                | _                    |
| L51 | L5-L2      | SUS            |                | _                    |
| L52 | L6-L2      | SUS            |                |                      |
| L53 | L7-L2      | SUS            |                | ACCELERATIONS (DEC)  |
| L54 | L8-L2      | SUS            |                | _                    |
| L55 | L9-L2      | SUS            |                | _                    |
| L56 | L10-L2     | SUS            |                |                      |
| L57 | L15-L2     | SUS            |                | _                    |
| L58 | L16-L2     | SUS            |                | _                    |
| L59 | L17-L2     | SUS            |                |                      |
| L60 | L18-L2     | SUS            |                | COMBINATION OF       |
| L61 | L19-L2     | SUS            |                | ACCELERATIONS        |
| L62 | L20-L2     | SUS            |                | (DOC)                |
| L63 | L21-L2     | SUS            |                |                      |
| L64 | L22-L2     | SUS            |                |                      |
| L65 | L25+L49    | SUS            |                |                      |
| L66 | L25+L50    | SUS            |                | W+P1 +               |
| L67 | L25+L51    | SUS            |                | COMBINATION          |
| L68 | L25+L52    | SUS            |                | ACCELERATIO          |
| L69 | L25+L53    | SUS            |                | NS (DEC)             |
| L70 | L25+L54    | SUS            |                | SCALAR               |

|     | LOAD CASES        | STRESS<br>TYPE | LOAD<br>CYCLES | DESCRIPTION                                                |
|-----|-------------------|----------------|----------------|------------------------------------------------------------|
| L71 | L25+L55           | SUS            |                |                                                            |
| L72 | L25+L56           | SUS            |                |                                                            |
| L73 | L29+L65           | OCC            |                |                                                            |
| L74 | L29+L66           | OCC            |                |                                                            |
| L75 | L29+L67           | OCC            |                |                                                            |
| L76 | L29+L68           | OCC            |                |                                                            |
| L77 | L29+L69           | OCC            |                | W+P1 + WIN(1 2) +                                          |
| L78 | L29+L70           | OCC            |                | COMBINATION OF                                             |
| L79 | L29+L71           | OCC            |                | ACCELERATIONS                                              |
| L80 | L29+L72           | OCC            |                | (DEC)SCALAR                                                |
| L81 | L30+L65           | OCC            |                |                                                            |
| L82 | L30+L66           | OCC            |                | _                                                          |
| L83 | L30+L67           | OCC            |                |                                                            |
| L84 | L30+L68           | OCC            |                |                                                            |
| L85 | L30+L69           | OCC            |                | _                                                          |
| L86 | L30+L70           | OCC            |                |                                                            |
| L87 | L30+L71           | OCC            |                | _                                                          |
| L88 | L30+L72           | OCC            |                | _                                                          |
| L89 | L23-L2            | EXP            |                | D4 (SAGGING DOC)                                           |
| L90 | L24-L2            | EXP            |                | D5 (HOGGING DOC)                                           |
| L91 | L26               | FAT            | 7000           | EXPANSION (T1+D1)                                          |
| L92 | 0.6L31-0.6L32+L49 | FAT            | 1              | 0.6(D2-<br>D3)+A1.U1+B1.<br>U2+C1.U3<br>(DEC<br>CONDITION) |
| L93 | 0.6L31-0.6L32+L50 | FAT            | 1              | 0.6(D2-<br>D3)+A1.U1+B1.U2-C1.U3<br>(DEC<br>CONDITION)     |
| L94 | 0.6L31-0.6L32+L51 | FAT            | 1              | 0.6(D2-D3)+A1.U1-<br>B1.U2+C1.U3 (DEC<br>CONDITION)        |
| L95 | 0.6L31-0.6L32+L52 | FAT            | 1              | 0.6(D2-D3)+A1.U1-B1.U2-<br>C1.U3 (DEC<br>CONDITION)        |
| L96 | 0.6L31-0.6L32+L53 | FAT            | 1              | 0.6(D2-D3)-<br>A1.U1+B1.U2+C1.U3<br>(DEC<br>CONDITION)     |
| L97 | 0.6L31-0.6L32+L54 | FAT            | 1              | 0.6(D2-D3)-A1.U1+B1.U2-<br>C1.U3 (DEC<br>CONDITION)        |
| L98 | 0.6L31-0.6L32+L55 | FAT            | 1              | 0.6(D2-D3)-A1.U1-<br>B1.U2+C1.U3 (DEC<br>CONDITION)        |
| L99 | 0.6L31-0.6L32+L56 | FAT            | 1              | 0.6(D2-D3)-A1.U1-B1.U2-<br>C1.U3 (DEC<br>CONDITION)        |

|      | LOAD CASES          | STRESS<br>TYPE | LOAD<br>CYCLES | DESCRIPTION                                                  |
|------|---------------------|----------------|----------------|--------------------------------------------------------------|
| L100 | 0.48L31-0.48L32+L49 | FAT            | 909            | 0.48.D2-<br>0.48.D3+A1.U1+B1.U2+C1<br>.U3<br>(DEC CONDITION) |
| L101 | 0.48L31-0.48L32+L50 | FAT            | 909            | 0.48.D2-<br>0.48.D3+A1.U1+B1.U2-<br>C1.U3<br>(DEC CONDITION) |
| L102 | 0.48L31-0.48L32+L51 | FAT            | 909            | 0.48.D2-0.48.D3+A1.U1-<br>B1.U2+C1.U3<br>(DEC CONDITION)     |
| L103 | 0.48L31-0.48L32+L52 | FAT            | 909            | 0.48.D2-0.48.D3+A1.U1-<br>B1.U2-C1.U3<br>(DEC CONDITION)     |
| L104 | 0.48L31-0.48L32+L53 | FAT            | 909            | 0.48.D2-0.48.D3-<br>A1.U1+B1.U2+C1.U3<br>(DEC CONDITION)     |
| L105 | 0.48L31-0.48L32+L54 | FAT            | 909            | 0.48.D2-0.48.D3-<br>A1.U1+B1.U2-<br>C1.U3 (DEC<br>CONDITION) |
| L106 | 0.48L31-0.48L32+L55 | FAT            | 909            | 0.48.D2-0.48.D3-A1.U1-<br>B1.U2+C1.U3<br>(DEC CONDITION)     |
| L107 | 0.48L31-0.48L32+L56 | FAT            | 909            | 0.48.D2-0.48.D3-A1.U1-<br>B1.U2-C1.U3<br>(DEC<br>CONDITION)  |
| L108 | 0.36L31-0.36L32+L49 | FAT            | 2878           | 0.36.D2-<br>0.36.D3+A1.U1+B1.U2+C1<br>.U3<br>(DEC CONDITION) |
| L109 | 0.36L31-0.36L32+L50 | FAT            | 2878           | 0.36.D2-<br>0.36.D3+A1.U1+B<br>1.U2-C1.U3 (DEC<br>CONDITION) |
| L110 | 0.36L31-0.36L32+L51 | FAT            | 2878           | 0.36.D2-0.36.D3+A1.U1-<br>B1.U2+C1.U3<br>(DEC CONDITION)     |
| L111 | 0.36L31-0.36L32+L52 | FAT            | 2878           | 0.36.D2-0.36.D3+A1.U1-<br>B1.U2-C1.U3<br>(DEC<br>CONDITION)  |
| L112 | 0.36L31-0.36L32+L53 | FAT            | 2878           | 0.36.D2-0.36.D3-<br>A1.U1+B1.U2+C1.U3<br>(DEC CONDITION)     |
| L113 | 0.36L31-0.36L32+L54 | FAT            | 2878           | 0.36.D2-0.36.D3-<br>A1.U1+B1.U2-<br>C1.U3 (DEC<br>CONDITION) |
| L114 | 0.36L31-0.36L32+L55 | FAT            | 2878           | 0.36.D2-0.36.D3-A1.U1-<br>B1.U2+C1.U3<br>(DEC CONDITION)     |
| L115 | 0.36L31-0.36L32+L56 | FAT            | 2878           | 0.36.D2-0.36.D3-A1.U1-                                       |

|      | LOAD CASES          | STRESS<br>TYPE | LOAD<br>CYCLES | DESCRIPTION                                                  |
|------|---------------------|----------------|----------------|--------------------------------------------------------------|
|      |                     |                |                | B1.U2-C1.U3<br>(DEC<br>CONDITION)                            |
| L116 | 0.6L89-0.6L90+L57   | FAT            | 6056           | 0.6(D4-<br>D5)+A2.U1+B2.U2+C2.U3<br>(DOC CONDITION)          |
| L117 | 0.6L89-0.6L90+L58   | FAT            | 6056           | 0.6(D4-<br>D5)+A2.U1+B2.<br>U2-C2.U3 (DOC<br>CONDITION)      |
| L118 | 0.6L89-0.6L90+L59   | FAT            | 6056           | 0.6(D4-D5)+A2.U1-<br>B2.U2+C2.U3<br>(DOC CONDITION)          |
| L119 | 0.6L89-0.6L90+L60   | FAT            | 6056           | 0.6(D4-D5)+A2.U1-<br>B2.U2-C2.U3<br>(DOC<br>CONDITION)       |
| L120 | 0.6L89-0.6L90+L61   | FAT            | 6056           | 0.6(D4-D5)-<br>A2.U1+B2.U2+C2.U3<br>(DOC CONDITION)          |
| L121 | 0.6L89-0.6L90+L62   | FAT            | 6056           | 0.6(D4-D5)-A2.U1+B2.U2-<br>C2.U3 (DOC<br>CONDITION)          |
| L122 | 0.6L89-0.6L90+L63   | FAT            | 6056           | 0.6(D4-D5)-A2.U1-<br>B2.U2+C2.U3 (DOC<br>CONDITION)          |
| L123 | 0.6L89-0.6L90+L64   | FAT            | 6056           | 0.6(D4-D5)-A2.U1-B2.U2-<br>C2.U3 (DOC<br>CONDITION)          |
| L124 | 0.42L89-0.42L90+L57 | FAT            | 15900          | 0.42.D4-<br>0.42.D5+A2.U1+B2.U2+C2<br>.U3<br>(DOC CONDITION) |
| L125 | 0.42L89-0.42L90+L58 | FAT            | 15900          | 0.42.D4-<br>0.42.D5+A2.U1+B2.U2-<br>C2.U3<br>(DOC CONDITION) |
| L126 | 0.42L89-0.42L90+L59 | FAT            | 15900          | 0.42.D4-0.42.D5+A2.U1-<br>B2.U2+C2.U3<br>(DOC CONDITION)     |
| L127 | 0.42L89-0.42L90+L60 | FAT            | 15900          | 0.42.D4-0.42.D5+A2.U1-<br>B2.U2-C2.U3<br>(DOC CONDITION)     |
| L128 | 0.42L89-0.42L90+L61 | FAT            | 15900          | 0.42.D4-0.42.D5-<br>A2.U1+B2.U2+C2.U3<br>(DOC CONDITION)     |
| L129 | 0.42L89-0.42L90+L62 | FAT            | 15900          | 0.42.D4-0.42.D5-<br>A2.U1+B2.U2-C2.U3<br>(DOC CONDITION)     |
| L130 | 0.42L89-0.42L90+L63 | FAT            | 15900          | 0.42.D4-0.42.D5-A2.U1-<br>B2.U2+C2.U3<br>(DOC CONDITION)     |
| L131 | 0.42L89-0.42L90+L64 | FAT            | 15900          | 0.42.D4-0.42.D5-A2.U1-<br>B2.U2-C2.U3                        |
|      | LOAD CASES          | STRESS<br>TYPE | LOAD<br>CYCLES | DESCRIPTION                                                  |
|------|---------------------|----------------|----------------|--------------------------------------------------------------|
|      |                     |                |                | (DOC CONDITION)                                              |
| L132 | 0.3L89-0.3L90+L57   | FAT            | 53450          | 0.3.D4-<br>0.3.D5+A2.U1+B2.U2+C2.<br>U3<br>(DOC CONDITION)   |
| L133 | 0.3L89-0.3L90+L58   | FAT            | 53450          | 0.3.D4-<br>0.3.D5+A2.U1+B2.U2-<br>C2.U3<br>(DOC CONDITION)   |
| L134 | 0.3L89-0.3L90+L59   | FAT            | 53450          | 0.3.D4-0.3.D5+A2.U1-<br>B2.U2+C2.U3<br>(DOC CONDITION)       |
| L135 | 0.3L89-0.3L90+L60   | FAT            | 53450          | 0.3.D4-0.3.D5+A2.U1-<br>B2.U2-C2.U3<br>(DOC<br>CONDITION)    |
| L136 | 0.3L89-0.3L90+L61   | FAT            | 53450          | 0.3.D4-0.3.D5-<br>A2.U1+B2.U2+C2.U3<br>(DOC CONDITION)       |
| L137 | 0.3L89-0.3L90+L62   | FAT            | 53450          | 0.3.D4-0.3.D5-<br>A2.U1+B2.U2-<br>C2.U3 (DOC<br>CONDITION)   |
| L138 | 0.3L89-0.3L90+L63   | FAT            | 53450          | 0.3.D4-0.3.D5-A2.U1-<br>B2.U2+C2.U3<br>(DOC CONDITION)       |
| L139 | 0.3L89-0.3L90+L64   | FAT            | 53450          | 0.3.D4-0.3.D5-A2.U1-<br>B2.U2-C2.U3<br>(DOC<br>CONDITION)    |
| L140 | 0.18L89-0.18L90+L57 | FAT            | 184737         | 0.18.D4-<br>0.18.D5+A2.U1+B2.U2+C2<br>.U3<br>(DOC CONDITION) |
| L141 | 0.18L89-0.18L90+L58 | FAT            | 184737         | 0.18.D4-<br>0.18.D5+A2.U1+B<br>2.U2-C2.U3 (DOC<br>CONDITION) |
| L142 | 0.18L89-0.18L90+L59 | FAT            | 184737         | 0.18.D4-0.18.D5+A2.U1-<br>B2.U2+C2.U3<br>(DOC CONDITION)     |
| L143 | 0.18L89-0.18L90+L60 | FAT            | 184737         | 0.18.D4-0.18.D5+A2.U1-<br>B2.U2-C2.U3<br>(DOC<br>CONDITION)  |
| L144 | 0.18L89-0.18L90+L61 | FAT            | 184737         | 0.18.D4-0.18.D5-<br>A2.U1+B2.U2+C2.U3<br>(DOC CONDITION)     |
| L145 | 0.18L89-0.18L90+L62 | FAT            | 184737         | 0.18.D4-0.18.D5-<br>A2.U1+B2.U2-<br>C2.U3 (DOC<br>CONDITION) |
| L146 | 0.18L89-0.18L90+L63 | FAT            | 184737         | 0.18.D4-0.18.D5-A2.U1-<br>B2.U2+C2.U3                        |

|      | LOAD CASES          | STRESS<br>TYPE | LOAD<br>CYCLES | DESCRIPTION                                                  |
|------|---------------------|----------------|----------------|--------------------------------------------------------------|
|      |                     |                |                | (DOC CONDITION)                                              |
| L147 | 0.18L89-0.18L90+L64 | FAT            | 184737         | 0.18.D4-0.18.D5-A2.U1-<br>B2.U2-C2.U3<br>(DOC<br>CONDITION)  |
| L148 | 0.12L89-0.12L90+L57 | FAT            | 980456         | 0.12.D4-<br>0.12.D5+A2.U1+B2.U2+C2<br>.U3<br>(DOC CONDITION) |
| L149 | 0.12L89-0.12L90+L58 | FAT            | 980456         | 0.12.D4-<br>0.12.D5+A2.U1+B<br>2.U2-C2.U3 (DOC<br>CONDITION) |
| L150 | 0.12L89-0.12L90+L59 | FAT            | 980456         | 0.12.D4-0.12.D5+A2.U1-<br>B2.U2+C2.U3<br>(DOC CONDITION)     |
| L151 | 0.12L89-0.12L90+L60 | FAT            | 980456         | 0.12.D4-0.12.D5+A2.U1-<br>B2.U2-C2.U3<br>(DOC<br>CONDITION)  |
| L152 | 0.12L89-0.12L90+L61 | FAT            | 980456         | 0.12.D4-0.12.D5-<br>A2.U1+B2.U2+C2.U3<br>(DOC CONDITION)     |
| L153 | 0.12L89-0.12L90+L62 | FAT            | 980456         | 0.12.D4-0.12.D5-<br>A2.U1+B2.U2-<br>C2.U3 (DOC<br>CONDITION) |
| L154 | 0.12L89-0.12L90+L63 | FAT            | 980456         | 0.12.D4-0.12.D5-A2.U1-<br>B2.U2+C2.U3<br>(DOC CONDITION)     |
| L155 | 0.12L89-0.12L90+L64 | FAT            | 980456         | 0.12.D4-0.12.D5-A2.U1-<br>B2.U2-C2.U3<br>(DOC<br>CONDITION)  |
| L156 | 0.06L89-0.06L90+L57 | FAT            | 443605<br>6    | 0.06.D4-<br>0.06.D5+A2.U1+B2.U2+C2<br>.U3<br>(DOC CONDITION) |
| L157 | 0.06L89-0.06L90+L58 | FAT            | 443605<br>6    | 0.06.D4-<br>0.06.D5+A2.U1+B2.U2-<br>C2.U3<br>(DOC CONDITION) |
| L158 | 0.06L89-0.06L90+L59 | FAT            | 443605<br>6    | 0.06.D4-0.06.D5+A2.U1-<br>B2.U2+C2.U3<br>(DOC CONDITION)     |
| L159 | 0.06L89-0.06L90+L60 | FAT            | 443605<br>6    | 0.06.D4-0.06.D5+A2.U1-<br>B2.U2-C2.U3<br>(DOC CONDITION)     |
| L160 | 0.06L89-0.06L90+L61 | FAT            | 443605<br>6    | 0.06.D4-0.06.D5-<br>A2.U1+B2.U2+C2.U3<br>(DOC CONDITION)     |
| L161 | 0.06L89-0.06L90+L62 | FAT            | 443605<br>6    | 0.06.D4-0.06.D5-<br>A2.U1+B2.U2-C2.U3<br>(DOC CONDITION)     |

|      | LOAD CASES                                                                                                                              | STRESS<br>TYPE | LOAD<br>CYCLES | DESCRIPTION                                                                     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|---------------------------------------------------------------------------------|
| L162 | 0.06L89-0.06L90+L63                                                                                                                     | FAT            | 443605<br>6    | 0.06.D4-0.06.D5-A2.U1-<br>B2.U2+C2.U3<br>(DOC CONDITION)                        |
| L163 | 0.06L89-0.06L90+L64                                                                                                                     | FAT            | 443605<br>6    | 0.06.D4-0.06.D5-A2.U1-<br>B2.U2-C2.U3<br>(DOC CONDITION)                        |
| L164 | 0.03L89-0.03L90+L57                                                                                                                     | FAT            | 578401<br>5    | 0.03.D4-<br>0.03.D5+A2.U1+B2.U2+C2<br>.U3<br>(DOC CONDITION)                    |
| L165 | 0.03L89-0.03L90+L58                                                                                                                     | FAT            | 578401<br>5    | 0.03.D4-<br>0.03.D5+A2.U1+B2.U2-<br>C2.U3<br>(DOC CONDITION)                    |
| L166 | 0.03L89-0.03L90+L59                                                                                                                     | FAT            | 578401<br>5    | 0.03.D4-0.03.D5+A2.U1-<br>B2.U2+C2.U3<br>(DOC CONDITION)                        |
| L167 | 0.03L89-0.03L90+L60                                                                                                                     | FAT            | 578401<br>5    | 0.03.D4-0.03.D5+A2.U1-<br>B2.U2-C2.U3<br>(DOC CONDITION)                        |
| L168 | 0.03L89-0.03L90+L61                                                                                                                     | FAT            | 578401<br>5    | 0.03.D4-0.03.D5-<br>A2.U1+B2.U2+C2.U3<br>(DOC CONDITION)                        |
| L169 | 0.03L89-0.03L90+L62                                                                                                                     | FAT            | 578401<br>5    | 0.03.D4-0.03.D5-<br>A2.U1+B2.U2-C2.U3<br>(DOC CONDITION)                        |
| L170 | 0.03L89-0.03L90+L63                                                                                                                     | FAT            | 578401<br>5    | 0.03.D4-0.03.D5-A2.U1-<br>B2.U2+C2.U3<br>(DOC CONDITION)                        |
| L171 | 0.03L89-0.03L90+L64                                                                                                                     | FAT            | 578401<br>5    | 0.03.D4-0.03.D5-A2.U1-<br>B2.U2-C2.U3<br>(DOC<br>CONDITION)                     |
| L172 | L65,L66,L67,L68,L69<br>,L70,L71,<br>L72                                                                                                 | SUS            |                | MAXIMUM: W+P1 +<br>COMBINATION<br>OF ACCELERATIONS<br>(DEC)                     |
| L173 | L73,L74,L75,L76,L77<br>,L78,L79,<br>L80,L81,L82,L83,L84<br>,L85,L86,<br>L87,L88                                                         | OCC            |                | MAXIMUM: W+P1 +<br>WIN(1,2) +<br>COMBINATION OF<br>ACCELERATIONS<br>(DEC)       |
| L174 | L2,L3,L4,L5,L6,<br>L7,L8,L9,L10,L<br>11,L12,L13,L14,<br>L33,L34,L35,L<br>36,L37,L38,L39,L40,<br>L41,L42,L<br>43,L44,L45,L46,L47,<br>L48 | OPE            |                | MAXIMUM:<br>W+T1+P1+D1 / WIN(1,2) /<br>D(2,3) / COMBINATION<br>OF ACCELERATIONS |

## 10.1.4 Determinação da Tensão de Fadiga pelo CAESAR II

A tensão atuante baseada no critério da tensão admissível pode ser determinada através dos seguintes passos:

1 – Determinação da tensão devido às acelerações:

Conforme consta no manual do *software*, devido ao fato do código ASME B31 não abordar o cálculo de fadiga, o CAESAR II leva em consideração no cálculo de fadiga, para todos os códigos de tubulações, com exceção do código IGE/TD/12 (por ser o único que contempla o cálculo de fadiga), a maior intensidade de tensão (*3D stress intensity*) para os quatro pontos da seção transversal apresentados na Figura 17.



Fig. 78 Indicação da posição dos quatro pontos da seção transversal (Caesar II User's Guide, 2019). Fonte:

O *software* calcula a tensão principal a partir da tensão longitudinal, tensão circunferencial e tensão de cisalhamento. As tensões são determinadas no estado plano de tensões, conforme demonstra a Figura 6.4.



Fig. 79 Determinação das tensões principais nos quatro pontos da seção transversal (Caesar II User's Guide, 2019). Fonte:

A tensão *3D stress intensity* corresponde à maior intensidade de tensão entre as tensões principais S1 e S3.

Sendo assim, para a análise de fadiga baseada no critério da tensão admissível, deve ser determinada a tensão média *3D Max. Stress Intensity* para os maiores *stress ratios* devido às acelerações tanto para a condição DOC (caso L54 ao L61), quanto para a condição DEC (caso L62 ao L69). A obtenção destes resultados pode ser feita a partir da saída de dados do *software* em conjunto com a utilização de planilhas com a aplicação de macros, de forma a buscar os resultados da análise e automatizar a obtenção da média.

2 - Determinação das tensões devido aos deslocamentos:

Conforme observado deverá ser determinada a tensão *3D Máx. Stress Intensity* para o caso de carregamento que contempla o deslocamento estrutural devido à passagem da onda centenária na condição DEC (L93), e também, devido à passagem da maior altura de onda (8 metros) para a condição DOC (L81).

## 3 – Somatório dos resultados de tensões 3D Máx. Stress Intensity:

O somatório das tensões *3D Máx. Stress Intensity* respectivas às condições DOC e DEC correspondem às tensões atuantes no sistema de tubulações, às quais deverão ser comparadas com as tensões admissíveis estipuladas no início do estudo, a partir da definição dos dados de entrada do estudo de fadiga.

O Capítulo VII desta dissertação, demonstra um caso prático de aplicação do critério da tensão admissível baseado no estudo de caso 5.1.2 apresentado nesta dissertação.